• 제목/요약/키워드: parametric vibration

검색결과 504건 처리시간 0.024초

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping

  • Udar, Ratnakar. S.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.481-500
    • /
    • 2007
  • The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane harmonic edge loading $P(t)=P_s+P_d\;{\cos}{\Omega}t$ is investigated. The present work deals with the problem of the occurrence of combination resonances in contrast to simple resonances in parametrically excited doubly curved panels. Analytical expressions for the instability regions are obtained at ${\Omega}={\omega}_m+{\omega}_n$, (${\Omega}$ is the excitation frequency and ${\omega}_m$ and ${\omega}_n$ are the natural frequencies of the system) by using the method of multiple scales. It is shown that, besides the principal instability region at ${\Omega}=2{\omega}_1$, where ${\omega}_1$ is the fundamental frequency, other cases of ${\Omega}={\omega}_m+{\omega}_n$, related to other modes, can be of major importance and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and the static load factor on dynamic instability behavior of simply supported doubly curved panels are studied. The results show that under localized edge loading, combination resonance zones are as important as simple resonance zones. The effects of damping show that there is a finite critical value of the dynamic load factor for each instability region below which the curved panels cannot become dynamically unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own natural frequency, may be of considerable interest in vibration testing of actual structures.

부가수 질량을 고려한 외팔판의 고유진동 해석 (Natural Frequency Analysis of Cantilever Plates with Added Mass)

  • 장현길;노인식;홍창호;이창섭
    • 대한조선학회논문집
    • /
    • 제50권1호
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

연속성을 갖는 탄성지반 위에 놓인 곡선부재의 자유진동 (Free Vibrations of Curved Members Resting on Elastic Foundation with Continuity Effect)

  • 이병구;박광규;오상진;진태기
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.371-379
    • /
    • 2001
  • 이 논문은 연속성을 갖는 탄성지반 위에 놓인 곡선부재의 자유진동에 관한 연구이다. 연속성을 갖는 탄성지반을 Pasternak 지반으로 모형화하여 곡선부재의 자유진동을 지배하는 무차원 상미분방정식을 유도하였다. 상미분방정식에는 회전관성과 전단변형효과를 고려하였다. 곡선부재의 선형은 원호형, 포물선형, 정현형, 타원형의 4가지를 채택하였고, 단부조건으로는 회전-회전, 회전-고정, 고정-고정의 3가지를 채택하였다. 실험실 규모의 실험을 실시하고 본 연구의 결과와 비교하여 연구의 타당성을 검증하였다. 수치해석의 결과로 무차원 고유진동수와 곡선부재의 변수들 사이의 관계를 표 및 그림에 나타내었으며 진동형의 예를 그림에 나타내었다.

  • PDF

구조요소의 단면특성에 따른 와플슬래브의 동적특성 분석 (Study on the Performance of Waffle slab by Variation on the Section Properties of the Constituent Structural Elements)

  • Choong, K.K.;Kim, Jae-Yeol;Kim, Kwang-Il;Kang, Joo-Won
    • 한국공간구조학회논문집
    • /
    • 제9권1호
    • /
    • pp.61-68
    • /
    • 2009
  • 본 연구는 와플구조의 구조적 거동에 파악하고자 한다. 와플슬래브의 두께, 주요 보의 깊이와 기둥의 크기를 변수로 하여 와플구조의 모드형상과 고유진동수를 파악하고자 하였다. 또한 쉘요소와 입체요소를 사용한 유한요소모델의 해석결과를 비교하였다. i)레벨2에서 주요 보의 깊이가 증가함에 따라, ii)레벨3에서 와플슬래브 두께가 감소함에 따라 모드진동수는 증가하였다. 3차원 모델과 2차원 모델의 모드형상은 유사한 형상을 보였다. 또한, 3차원 모델과 2차원 모델사이의 모드진동수는 25%에서 36%의 차이를 보였다.

  • PDF

MEMS 공정을 이용한 마이크로 PZT 외팔보 에너지 수확소자의 제작 및 특성 (Fabrication and Characteristics of Micro PZT Cantilever Energy Harvester Using MEMS Technologies)

  • 김문근;황범석;정재화;민남기;권광호
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.515-518
    • /
    • 2011
  • In this work, we designed and fabricated a multilayer thin film Pb(Zr,Ti)$O_3$ cantilever with a Si proof mass for low frequency vibration energy harvesting applications. A mathematical model of a mu lti-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. W e fabricated a device with beam dimensions of about 4,930 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 12 ${\mu}M$, and an integrated Si proof mass with dimensions of about 1,410 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 450 ${\mu}M$. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 84.5 Hz, 88 mV, and 0.166 ${\mu}Wat$ 1.0 g and 23.7 ${\Omega}$, respectively. The dimensions of the cantilever were determined for the resonance frequency of the cantilever.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.