Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.6.515

Fabrication and Characteristics of Micro PZT Cantilever Energy Harvester Using MEMS Technologies  

Kim, Moon-Keun (Department of Control and Instrumentation Engineering, Korea University)
Hwang, Beom-Seok (Department of Control and Instrumentation Engineering, Korea University)
Jeong, Jae-Hwa (Department of Control and Instrumentation Engineering, Korea University)
Min, Nam-Ki (Department of Control and Instrumentation Engineering, Korea University)
Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.6, 2011 , pp. 515-518 More about this Journal
Abstract
In this work, we designed and fabricated a multilayer thin film Pb(Zr,Ti)$O_3$ cantilever with a Si proof mass for low frequency vibration energy harvesting applications. A mathematical model of a mu lti-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. W e fabricated a device with beam dimensions of about 4,930 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 12 ${\mu}M$, and an integrated Si proof mass with dimensions of about 1,410 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 450 ${\mu}M$. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 84.5 Hz, 88 mV, and 0.166 ${\mu}Wat$ 1.0 g and 23.7 ${\Omega}$, respectively. The dimensions of the cantilever were determined for the resonance frequency of the cantilever.
Keywords
Energy harvesting; PZT; Cantilever; Resonant frequency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Sugano and O. Tabata, Microsyst. Technol., 9, 11 (2002).   DOI
2 D. Shen, J. H. Park, J. H. Noh, S. Y. Choe, S. H. Kim, H. C. Wikle III, and D. J. Kim, Sensor Actuat., A154, 103 (2009).
3 S. P. Beeby, M. J. Tudor, and N. M. White, J. Meas. Sci. Technol., 17, 175 (2006).   DOI
4 S. Priya and D. J. Inman, Springer Science Business Media, LLC. (2009).
5 Y. H. Ko and J. S. Yu, J. Nanosci. Nanotechnol., 10, 8095 (2010).   DOI
6 S. Priya, Appl. Phys. Lett., 87, 184101 (2005).   DOI
7 S. Roudy, J. Intell. Mater. Syst. Struct., 16, 809 (2005).   DOI
8 S. Roundy, P. K. Wright, and J. Rabaey, Comput. Commun., 26, 1131 (2003).   DOI
9 M. Kim, B. Hwang, N. K. Min, K. H. Kwon, andK. B. Park, J. Nanosci. Nanotechnol., 11, 1 (2011).   DOI
10 K. H. Kwon, S. Y. Kang, G. Y. Yeom, N. K. Hong, and J. H. Lee, J. Electron. Soc., 147, 1807 (2000).   DOI   ScienceOn
11 A. M. Efremov, D. P Kim, and C. I. Kim, Thin Solid Films, 474, 267 (2005).   DOI   ScienceOn
12 Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, Sensor Actuat., A122, 16 (2005).