• Title/Summary/Keyword: parametric regression

Search Result 236, Processing Time 0.024 seconds

Estimation of fundamental natural period of vibration for reinforced concrete shear walls systems

  • Shatnawi, Anis S.;Al-Beddawe, Esra'a H.;Musmar, Mazen A.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.295-310
    • /
    • 2019
  • This study attempts to develop new simplified approximate formulas to predict the fundamental natural periods of vibration (T) for bearing wall systems engaged with special reinforced concrete shear walls (RCSW) under seismic loads. Commonly, seismic codes suggested empirical formulas established by regression analysis of measured T for buildings during earthquake motions. These formulas depend on structure type, building height, number, height and length of SW, and ratio of SW area to base area of structure. In this study, a parametric investigation is performed for T of 110 selected models of bearing RCSW systems with varying structural height, configuration of horizontal plans including building width, number and width of bays, presence of middle corridors and core SWs. For this purpose, a 3D non-linear response time history (TH) analysis is implemented using ETABS v16.2.1. New formulas to estimate T are anticipated and compared with those obtained from formulas of IBC 2012 and ASCE/SEI 7-10. Moreover, the study examines responses of an arbitrarily two selected test model of 60 m and 80 m in height with presence of SWs having middle corridors. It is observed that the performance of the tested buildings is different through arising of considerable errors when using codes' formulas for estimating T. Accordingly, using the present proposed formulas exhibits more reasonable and safer design compared to codes' formulas. The results showed that equitable enhancement is promising to improve T formulas approaching enhanced and accurate estimation of T with reliable analysis, design, and evaluation of bearing RCSW systems.

Reasons influencing the preferences of prospective patients and orthodontists for different orthodontic appliances

  • Maranon-Vasquez, Guido Artemio;Barreto, Luisa Schubach da Costa;Pithon, Matheus Melo;Nojima, Lincoln Issamu;Nojima, Matilde da Cunha Goncalves;Araujo, Monica Tirre de Souza;de Souza, Margareth Maria Gomes
    • The korean journal of orthodontics
    • /
    • v.51 no.2
    • /
    • pp.115-125
    • /
    • 2021
  • Objective: To evaluate the reasons influencing the preferences for a certain type of orthodontic appliance over another among prospective patients (PP) and orthodontists. Methods: A total of 49 PP and 51 orthodontists were asked about their preferences for the following appliances: clear aligners (CA), lingual metallic brackets (LMB), polycrystalline and monocrystalline ceramic brackets, and buccal metallic brackets (BMB). The participants rated the importance of 17 potential reasons that would explain their choices. The reasons that contributed most to these preferences were identified. Non-parametric tests (Fisher's exact, χ2 and Mann-Whitney tests) and multivariate analyses (regression and discriminant analysis) were used to assess the data (α = 0.05). Results: CA and BMB were the most chosen appliances by PP and orthodontists, respectively. LMB was the most rejected option among both groups of participants (p < 0.001). Rates of the importance of pain/discomfort, smile esthetics, finishing details, and feeding/speech impairment showed the highest differences between PP and orthodontists (p < 0.0005). Discriminant analyses showed that individuals who considered treatment time and smile esthetics as more important were more likely to prefer CA, while those who prioritized finishing details and cost were more likely to choose BMB (p < 0.05). Conclusions: Reasons related to comfort and quality of life during use were considered as more important by PP, while those related to the results and clinical performance of the appliances were considered as more relevant by orthodontists.

Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel (Type 316LN 스테인리스강의 장시간 크리프 수명 예측을 위한 최소구속법의 적용)

  • Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Lee, Chan-Bock
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.118-124
    • /
    • 2008
  • Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

Overview of estimating the average treatment effect using dimension reduction methods (차원축소 방법을 이용한 평균처리효과 추정에 대한 개요)

  • Mijeong Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.323-335
    • /
    • 2023
  • In causal analysis of high dimensional data, it is important to reduce the dimension of covariates and transform them appropriately to control confounders that affect treatment and potential outcomes. The augmented inverse probability weighting (AIPW) method is mainly used for estimation of average treatment effect (ATE). AIPW estimator can be obtained by using estimated propensity score and outcome model. ATE estimator can be inconsistent or have large asymptotic variance when using estimated propensity score and outcome model obtained by parametric methods that includes all covariates, especially for high dimensional data. For this reason, an ATE estimation using an appropriate dimension reduction method and semiparametric model for high dimensional data is attracting attention. Semiparametric method or sparse sufficient dimensionality reduction method can be uesd for dimension reduction for the estimation of propensity score and outcome model. Recently, another method has been proposed that does not use propensity score and outcome regression. After reducing dimension of covariates, ATE estimation can be performed using matching. Among the studies on ATE estimation methods for high dimensional data, four recently proposed studies will be introduced, and how to interpret the estimated ATE will be discussed.

Comparative Study of AI Models for Reliability Function Estimation in NPP Digital I&C System Failure Prediction (원전 디지털 I&C 계통 고장예측을 위한 신뢰도 함수 추정 인공지능 모델 비교연구)

  • DaeYoung Lee;JeongHun Lee;SeungHyeok Yang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.1-10
    • /
    • 2023
  • The nuclear power plant(NPP)'s Instrumentation and Control(I&C) system periodically conducts integrity checks for the maintenance of self-diagnostic function during normal operation. Additionally, it performs functionality and performance checks during planned preventive maintenance periods. However, there is a need for technological development to diagnose failures and prevent accidents in advance. In this paper, we studied methods for estimating the reliability function by utilizing environmental data and self-diagnostic data of the I&C equipment. To obtain failure data, we assumed probability distributions for component features of the I&C equipment and generated virtual failure data. Using this failure data, we estimated the reliability function using representative artificial intelligence(AI) models used in survival analysis(DeepSurve, DeepHit). And we also estimated the reliability function through the Cox regression model of the traditional semi-parametric method. We confirmed the feasibility through the residual lifetime calculations based on environmental and diagnostic data.

Analysis of Allowable Stresses of Machine Graded Lumber in Korea (국내 기계등급구조재의 허용응력 분석)

  • Hong, Jung-Pyo;Oh, Jung-Kwon;Park, Joo-Saeng;Han, Yeon Jung;Pang, Sung-Jun;Kim, Chul-Ki;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • 365 pieces of domestic $38{\times}140{\times}3600mm$ Red pine structural lumber were machine graded conforming to a softwood structural lumber standard (KS F 3020). The allowable bending stresses calculated for each grade were compared with the values currently tabulated in the standard. Four calculation methods for lower $5^{th}$ percentile bending stress were non-parametric estimation with 75% confidence level, 2-parameter and 3-parameter Weibull distribution fit, and bending modulus of rupture (MOR)-modulus of elasticity (MOE) regression based method. Only the data set of Grades E8, E9, and E10 were statistically eligible for the $5^{th}$ percentile calculation. The MOR-MOE regression based method only was able to estimate the lower $5^{th}$ percentile values theoretically for the full range of grades. The results showed that all allowable bending stresses calculated were lower than the design values tabulated in the standard. This implies that the current machine grading system has the pitfall of structural safety. Improvement in current machine grading system could be achieved by introducing the bending strength and stiffness combination grade system.

Analysis of Survivability for Combatants during Offensive Operations at the Tactical Level (전술제대 공격작전간 전투원 생존성에 관한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Kim, GakGyu
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.921-932
    • /
    • 2015
  • This study analyzed military personnel survivability in regards to offensive operations according to the scientific military training data of a reinforced infantry battalion. Scientific battle training was conducted at the Korea Combat Training Center (KCTC) training facility and utilized scientific military training equipment that included MILES and the main exercise control system. The training audience freely engaged an OPFOR who is an expert at tactics and weapon systems. It provides a statistical analysis of data in regards to state-of-the-art military training because the scientific battle training system saves and utilizes all training zone data for analysis and after action review as well as offers training control during the training period. The methodologies used the Cox PH modeling (which does not require parametric distribution assumptions) and decision tree modeling for survival data such as CART, GUIDE, and CTREE for richer and easier interpretation. The variables that violate the PH assumption were stratified and analyzed. Since the Cox PH model result was not easy to interpret the period of service, additional interpretation was attempted through univariate local regression. CART, GUIDE, and CTREE formed different tree models which allow for various interpretations.

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. As a result, the major variables to determine the size of distribution factors were girder spacing, overhang length and span length in case of external girders. For internal adjacent girders, the determinant factors were girder spacing, overhang length, span length and width of bridge. For internal girders, the factors were girder spacing, width of bridge and span length. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.