• 제목/요약/키워드: parameter-dependent model

검색결과 398건 처리시간 0.028초

Output feedback model predictive control for Wiener model with parameter dependent Lyapunov function

  • Yoo, Woo-Jong;Ji, Dae-Hyun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.685-689
    • /
    • 2005
  • In this paper, we consider a robust output feedback model predictive controller(MPC) design for Wiener model. Nonlinearities that couldn't be represented in static nonlinearity block of Wiener model are regarded as uncertainties in linear block. An dynamic output feedback controller design method is presented for Wiener MPC. According to MPC algorithm, the control law is computed based on linear matrix inequality(LMI)at each sampling time by solving convex optimization. Also, a new parameter dependent Lyapunov function is proposed to get a less conservative condition. The results are illustrated with numerical example.

  • PDF

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

분포정수회로모델을 이용한 수직 접지전극의 접지임피던스의 분석 (Analysis for the Grounding Impedance of Vertical Grounding Electrodes using the Distributed Parameter Circuit Model)

  • 이복희;김종호;최종혁
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1103-1108
    • /
    • 2010
  • A grounding electrode has the transient grounding impedance characteristics against lightning surges. So the performance of grounding electrodes should be evaluated as a grounding impedance as well as the ground resistance. The frequency-dependent grounding impedance is varied with the shape and size of grounding electrode and is divided into both inductive and capacitive behaviors. This paper presents a theoretical analysis for the grounding impedance determined by the size of grounding electrode using the distributed parameter circuit model. EMTP and Matlab programs were used in calculating the frequency-dependent grounding impedances of vertical grounding electrodes. It was found that the frequency-dependent grounding characteristics of vertical grounding electrodes are characterized by the distributed parameters which are changed in the dimension of grounding electrodes.

Robust Model Predictive Control Using Polytopic Description of Input Constraints

  • Lee, Sang-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.566-569
    • /
    • 2009
  • In this paper, we propose a less conservative a linear matrix inequality (LMI) condition for the constrained robust model predictive control of systems with input constraints and polytopic uncertainty. Systems with input constraints are represented as perturbed systems with sector bounded conditions. For the infinite horizon control, closed-loop stability conditions are obtained by using a parameter dependent Lyapunov function. The effectiveness of the proposed method is shown by an example.

DENSITY DEPENDENT MORTALITY OF INTERMEDIATE PREDATOR CONTROLS CHAOS-CONCLUSION DRAWN FROM A TRI-TROPHIC FOOD CHAIN

  • NATH, BINAYAK;DAS, KRISHNA PADA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권3호
    • /
    • pp.179-199
    • /
    • 2018
  • The paper explores a tri-trophic food chain model with density dependent mortality of intermediate predator. To analyze this aspect, we have worked out the local stability of different equilibrium points. We have also derived the conditions for global stability of interior equilibrium point and conditions for persistence of model system. To observe the global behaviour of the system, we performed extensive numerical simulations. Our simulation results reveal that chaotic dynamics is produced for increasing value of half-saturation constant. We have also observed trajectory motions around different equilibrium points. It is noticed that chaotic dynamics has been controlled by increasing value of density dependent mortality parameter. So, we conclude that the density dependent mortality parameter can be used to control chaotic dynamics. We also applied basic tools of nonlinear dynamics such as Poincare section and Lyapunov exponent to investigate chaotic behaviour of the system.

Identification of the strain-dependent coefficient of permeability by combining the results of experimental and numerical oedometer tests with free lateral movement

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.1-14
    • /
    • 2022
  • The key parameter that affects the consolidation process of soil is the coefficient of permeability. The common assumption in the consolidation analysis is that the coefficient of permeability is porosity-dependent. However, various authors suggest that the strain-dependency of the coefficient of permeability should also be taken into account. In this paper, we present results of experimental and numerical analyses, with an aim to determine the strain-dependency of the coefficient of permeability. We present in detail both the experimental procedure and the finite element formulation of the two-dimensional axisymmetric numerical model of the oedometer test (standard and modified). We perform a set of experimental standard and modified oedometer tests. We use these experimental results to validate our numerical model and to define the model input parameter. Finally, by combining the experimental and numerical results, we propose the expression for the strain-dependent coefficient of permeability.

파라미터 불확실성 및 시간지연을 갖는 레이더 김벌 안정화 시스템의 지연종속 퍼지 H 제에 (Delay Dependent Fuzzy H Control of Radar Gimbal Stabilization System with Parameter Uncertainty and Time Delay)

  • 김태식;이해창;이갑래
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.920-929
    • /
    • 2005
  • This paper presents controller design method for nonlinear radar gimbal system with parameter uncertainty and time delay. In order to consider nonlinearity of gimbal bearing frictional torque, we firstly represent fuzzy model for the nonlinear gimbal system, which is achieved by fuzzy combination of linear models through nonlinear fuzzy membership functions. And secondly we propose a delay dependent fuzzy $H_\infty$ controller design method for the delayed fuzzy model with parameter uncertainty and design radar gimbal controller. The designed controller stabilize gimbal system and guarantee $H_\infty$ performance. A computer simulation is given to illustrate stabilized control performances of the designed controller.

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.459-466
    • /
    • 2024
  • Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.

A Performance Analysis for Interconnections of 3D ICs with Frequency-Dependent TSV Model in S-parameter

  • Han, Ki Jin;Lim, Younghyun;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.649-657
    • /
    • 2014
  • In this study, the effects of the frequency-dependent characteristics of through-silicon vias (TSVs) on the performance of 3D ICs are examined by evaluating a typical interconnection structure, which is composed of 32-nm CMOS inverter drivers and receivers connected through TSVs. The frequency-domain model of TSVs is extracted in S-parameter from a 3D electromagnetic (EM) method, where the dimensional variation effect of TSVs can be accurately considered for a comprehensive parameter sweep simulation. A parametric analysis shows that the propagation delay increases with the diameter and height of the TSVs but decreases with the pitch and liner thickness. We also investigate the crosstalk effect between TSVs by testing different signaling conditions. From the simulations, the worst signal integrity is observed when the signal experiences a simultaneously coupled transition in the opposite direction from the aggressor lines. Simulation results for nine-TSV bundles having regular and staggered patterns reveal that the proposed method can characterize TSV-based 3D interconnections of any dimensions and patterns.

탄소접지극 접지임피던스의 주파수의존성과 과도응답특성의 해석 (Analysis of Transient Response Behavior and Frequency-Dependent Ground Impedances of the Carbon Ground Electrodes)

  • 이복희;이강수;김유하;엄상현
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.54-61
    • /
    • 2013
  • This paper presents transient response behavior and frequency-dependent ground impedance of a single carbon ground electrode. The ground impedance of the carbon ground electrode was measured as a function of frequency of injected currents and simulated by using the distributed parameter circuit model with due regard to the frequency-dependent soil parameters, and the transient response behavior of the carbon ground electrode against impulse currents were investigated. As a consequence, the frequency-dependent ground impedance of the carbon ground electrode showed the capacitive behavior, that is, the ground impedance decreases with increasing the frequency of injected currents and lowers at the fast front time of impulse current. It was found that the carbon ground electrode is effective in grounding system for lightning protection. The ground impedance simulated with due regard to the frequency-dependent soil parameters was in good agreement with the measured data. The adequacy of the simulation technique and the distributed parameter circuit model for the carbon ground electrode was verified. It is expected that the simulation methodology, which analyzes the frequency-dependent ground impedance of the carbon ground electrode proposed in this work, can be used in the design of a grounding system for protection against lightning.