• Title/Summary/Keyword: parameter sets

Search Result 334, Processing Time 0.03 seconds

A two-parameter discrete distribution with a bathtub hazard shape

  • Sarhan, Ammar M.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.15-27
    • /
    • 2017
  • This paper introduces a two-parameter discrete distribution based on a continuous two-parameter bathtub distribution. It is the only two-parameter discrete distribution that shows a bathtub-shaped hazard function. Some statistical properties of the distribution are discussed. Three different methods are used to estimate its two unknown parameters. The point estimators of the parameters have no closed form. The bootstrap method is used to estimate the distributions of these point estimators. Different approximations of the interval estimations for the two-parameters are discussed. Real data sets are analyzed to show how this distribution works in practice. A simulation study is performed to investigate the properties of the estimations obtained and compare their performances.

Hybrid PSO-Complex Algorithm Based Parameter Identification for a Composite Load Model

  • Del Castillo, Manuelito Y. Jr.;Song, Hwachang;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.464-471
    • /
    • 2013
  • This paper proposes a hybrid searching algorithm based on parameter identification for power system load models. Hybrid searching was performed by the combination of particle swarm optimization (PSO) and a complex method, which enhances the convergence of solutions closer to minima and takes advantage of global searching with PSO. In this paper, the load model of interest is composed of a ZIP model and a third-order model for induction motors for stability analysis, and parameter sets are obtained that best-fit the output measurement data using the hybrid search. The origin of the hybrid method is to further apply the complex method as a local search for finding better solutions using the selected particles from the performed PSO procedure.

A Comparison of Parameter Design Methods for Multiple Performance Characteristics (다특성 파라미터설계 방법의 비교 연구)

  • Soh, Woo-Jin;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.198-207
    • /
    • 2012
  • In product or process parameter design, the case of multiple performance characteristics appears more commonly than that of a single characteristic. Numerous methods have been developed to deal with such multi-characteristic parameter design (MCPD) problems. Among these, this paper considers three representative methods, which are respectively based on the desirability function (DF), grey relational analysis (GRA), and principal component analysis (PCA). These three methods are then used to solve the MCPD problems in ten case studies reported in the literature. The performance of each method is evaluated for various combinations of its algorithmic parameters and alternatives. Relative performances of the three methods are then compared in terms of the significance of a design parameter and the overall performance value corresponding to the compromise optimal design condition identified by each method. Although no method is significantly inferior to others for the data sets considered, the GRA-based and PCA-based methods perform slightly better than the DF-based method. Besides, for the PCA-based method, the compromise optimal design condition depends much on which alternative is adopted while, for the GRA-based method, it is almost independent of the algorithmic parameter, and therefore, the difficulty involved in selecting an appropriate algorithmic parameter value can be alleviated.

Space and Time Sensor Fusion Using an Active Camera For Mobile Robot Navigation

  • Jin, Tae-Seok;Lee, Bong-Ki;Park, Soo-Min;Lee, Kwon-Soon;Lee, Jang-Myung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.127-132
    • /
    • 2002
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations. finally, the new space and time sensor fusion (STSF) scheme is applied to the control of a mobile robot in an unstructured environment as well as structured environment.

  • PDF

A Biclustering Method for Time Series Analysis

  • Lee, Jeong-Hwa;Lee, Young-Rok;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Biclustering is a method of finding meaningful subsets of objects and attributes simultaneously, which may not be detected by traditional clustering methods. It is popularly used for the analysis of microarray data representing the expression levels of genes by conditions. Usually, biclustering algorithms do not consider a sequential relation between attributes. For time series data, however, bicluster solutions should keep the time sequence. This paper proposes a new biclustering algorithm for time series data by modifying the plaid model. The proposed algorithm introduces a parameter controlling an interval between two selected time points. Also, the pruning step preventing an over-fitting problem is modified so as to eliminate only starting or ending points. Results from artificial data sets show that the proposed method is more suitable for the extraction of biclusters from time series data sets. Moreover, by using the proposed method, we find some interesting observations from real-world time-course microarray data sets and apartment price data sets in metropolitan areas.

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

Applying Parallel Processing Technique in Parallel Circuit Testing Application for improve Circuit Test Ability in Circuit manufacturing

  • Prabhavat, Sittiporn;Nilagupta, Pradondet
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.792-793
    • /
    • 2005
  • Circuit testing process is very important in IC Manufacturing there are two ways in research for circuit testing improvement. These are ATPG Tool Design and Test simulation application. We are interested in how to use parallel technique such as one-side communication, parallel IO and dynamic Process with data partition for circuit testing improvement and we use one-side communication technique in this paper. The parallel ATPG Tool can reduce the test pattern sets of the circuit that is designed in laboratory for make sure that the fault is not occur. After that, we use result for parallel circuit test simulation to find fault between designed circuit and tested circuit. From the experiment, We use less execution time than non-parallel Process. And we can set more parameter for less test size. Previous experiment we can't do it because some parameter will affect much waste time. But in the research, if we use the best ATPG Tool can optimize to least test sets and parallel circuit testing application will not work. Because there are too little test set for circuit testing application. In this paper we use a standard sequential circuit of ISCAS89.

  • PDF

RCGA-Based Tuning of the 2DOF PID Controller (2자유도 PID 제어기의 RCGA기반 동조)

  • Hwang, Seung-Wook;Song, Se-Hoon;Kim, Jung-Keun;Lee, Yun-Hyung;Lee, Hyun-Shik;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.948-955
    • /
    • 2008
  • The conventional PID controller has been widely employed in industry. However, the PID controller with one degree of freedom(DOF) can not optimize both set-point tracking response and disturbance rejection response at the same time. In order to solve this problem, a few types of 2DOF PID controllers have been suggested. In this paper, a tuning formula for a 2DOF PID controller is presented. The optimal parameter sets of the 2DOF PID controller are determined based on the first-order plus time delay process and a real-coded genetic algorithm(RCGA) such that the ITAE performance criterion is minimized. The tuning rule is then addressed using calculated parameter sets and another RCGA. A set of simulation works are carried out on three processes with time delay to verify the effectiveness of the proposed rule.

Load-slip curves of shear connection in composite structures: prediction based on ANNs

  • Guo, Kai;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.493-506
    • /
    • 2020
  • The load-slip relationship of the shear connection is an important parameter in design and analysis of composite structures. In this paper, a load-slip curve prediction method of the shear connection based on the artificial neural networks (ANNs) is proposed. The factors which are significantly related to the structural and deformation performance of the connection are selected, and the shear stiffness of shear connections and the transverse coordinate slip value of the load-slip curve are taken as the input parameters of the network. Load values corresponding to the slip values are used as the output parameter. A twolayer hidden layer network with 15 nodes and 10 nodes is designed. The test data of two different forms of shear connections, the stud shear connection and the perforated shear connection with flange heads, are collected from the previous literatures, and the data of six specimens are selected as the two prediction data sets, while the data of other specimens are used to train the neural networks. Two trained networks are used to predict the load-slip curves of their corresponding prediction data sets, and the ratio method is used to study the proximity between the prediction loads and the test loads. Results show that the load-slip curves predicted by the networks agree well with the test curves.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.