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Abstract -- This paper proposes a sensor-fusion technique
where the data sets for the previous moments are properly
transformed and fused into the current data sets to enable
accurate measurement, such as, distance to an obstacle and
location of the service robot itself. In the conventional fusion
schemes, the measurement is dependent on the current data sets.

As the results, more of sensors are required to measure a
certain physical parameter or to improve the accuracy of the
measurement. However, in this approach, instead of adding
more sensors to the system, the temporal sequence of the data
sets are stored and utilized for the measurement improvement.
Theoretical basis is illustrated by examples and the effectiveness
is proved through the simulations. Finally, the new space and
time sensor fusion (STSF) scheme is applied to the control of a
mobile robot in an unstructured environment as well as
structured environment.

I. INTRODUCTION

So far many of researches have been done on the spatial
fusion technique. That is, multiple sensor data are utilized
either for the purpose of providing complementary or
redundant data to measuring physical parameters. That is, all
of the current data from the sensors are integrated and fused
to obtain a correct set of data.

In recent years interest has been growing in the synergistic
use of multiple sensors to increase the capabilities of
intelligent machines and systems. For these systems to use
multiple sensors effectively, some method is needed for
integrating the information provided by these sensors into the
operations of the system.

In this new approach, the data obtained by the sensors are
utilized until they do not have any efficiency for the
measurement decision. The data set can be either redundant
to improve the accuracy or complementary for the
measurement. For the later case, this space and time sensor
fusion is essential for the measurement.

The space and time fusion is inevitable for the
complementary case. Therefore the effectiveness is very clear
and the utilization method will be determined by the sensory
data structure. However for the redundant case, it is required
to define that how to fuse the previous data sets to the current
data set. In this paper, we are basically going to utilize the
minimum square solution for the fusion scheme without
considering the error variance in the measurement for
simplicity.

II. SPACE AND TIME SENSOR FUSION

Multi-sensor fusion refers to any stage in the integration
process where there is an actual combination (or fusion) of
different sources of sensory information into one
representational format.

2.1. A General Pattern of Sensor Fusion

Figure 1 means to represent a general pattern of
multi-sensor integration and fusion in a system. In this figure,
n sensors are integrated to provide information to the system.
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Fig. | General pattern of multi-sensor integration and fusion in system.

The output Xy and X, from the first two sensors are
fused at the left-hand node into
representation X; 5 . The output X3 from the third sensor
could then be fused with X, ; at the next node, resulting in
the representation X, , 5 , which might then be fused at nodes
higher in the structure.

lower a new

2.2. Sensor Fusion Transformation

Let us define the k-th moment data set provided by i-th
sensor as, z(k), and the k-th measurement vector as x(k).
Then the conventional sensor fusion technique provides the
measurement as

x(k) =Y Wx, (k) M
i=1

where x;(k) = H ,z,(k)e R",

H, represents transformation from the sensory data to the

measurement vector, and W _ < gp ™" represents the
i

weighting value for i-th sensor.

Note that in the measurement of z,(k), the low-level fusion
might be applied with multiple sets of data with known
statistics[2]. The determination of # _is purely dependent.on

the sensory information and the decision of w, can be done

through the sensor fusion process. Later this measured data
are provided to the linear model of the control/measurement
system as current state vector, x(k). In this approach, we
propose a muiti-sensor data fusion using sensory data, T=,(j)
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as

K =Y WS PO )

i=1

where < .
e
p=
Note that when each of sensor information can provide the
measurement vector, that is, the redundant case, 7; (;)can be

expanded as
Tz, () =T, + H,z,()) (3)

where T] represents the homogeneous transformation

from the location of the j-th to the k-th measurements.

However, when the multi-sensors are utilized in the
complementary mode, the transformation relationship cannot
be defined uniquely; instead it will be defined depending on
the data constructing algorithm from the measurements. For
example, a single image frame captured by a camera on a
mobile robot cannot provide the distance to an object until the
corresponding object image is provided again from a
different location. This algorithm will be described in detail
in the section 3.1.

Figure 2 illustrates the concept of this multi-sensor
temporal data fusion. Estimation of parameter may provide
the measurement vector at each sampling moment. The
verification of significance and adjustment of weight steps
are pre-processing stages for the sensor fusion. After these
steps, the previous data set will be fused with the currert data
set, which provides a reliable and accurate data set as the
result of multi-sensor temporal fusion. Significance implies
that how much the previous data set is related to the current
data. An arbitrary value of significance may cause the
problem to be complex. Therefore, here we may consider
whether it corresponds to the same data or not, that is, 1 or 0.
When the significance is 0, the weight can be adjusted simply
to be 0. However, when the significance equals 1, the
adjustment of weight should be properly performed to
provide reliable and accurate data. Here in the following
sub-section, we introduce a simple methodology for the

weight adjustment.
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Fig. 2 Concep't of Space and Tirr;e Sensor Fusion.

2.3. Auto-correlation for Estimation Techniques
Each previous data set is transformed to the k-th (current)
sampling location, and represented by the measurement

—1

vector, Tz (j). Now how can we fuse the k data sets into a
reliable and accurate data set? In the Eq. (2), W, can be

determined by the geometrical relationship among sensors, in
other words, by the spatial sensor fusion.

While the estimating sensor is tracking a feature, it
generates a stream of measurements. When there is relative
motion between the feature and the sensor, the processes then
cease to be stationary. As an illustration of gathering the
model information from the sensor, we shall only consider the
stationary case, in order words, there is no motion between
the sensor and the feature being tracked. Our interest in the
proceeding analysis lies only in determining whether the
process noise is white or not.

Random processes are defined in terms of their ensemble
averages and these can be estimated. Our model shall be in
terms of such averages. In practice, we require to estimate
these averages from finite sequences. We consider a process
¥, as realized (estimated) by the finite sequence y(k), for

0<k<N-1. That y(k) is an estimate of the random
process ¥, is made plausible by a consideration of ergodic
processes. From y(k), we can, therefore, estimate the
averages for the process, the mean is estimated by

<« x(ky and the variance by :%f(x(k)—,uj ¥

k=0 k=0

o
H=N

A biased estimate of the autocorrelation is given by

_ N=lmj~1
Fulm) =S 0)- st 4 m) @
N k=0
with a variance of 5 _ 1 52 (%)

where | m|< N . Similarly, an unbiased autocorrelation is

estimated by
G =— Sk (©)
¢ (m)=——— x(k)- x(k + m)
N-im| i3
and the variance of the unbiased autocorrelation is given by

.= IN s (1)

* N-|m|

for the biased autocorrelation and similarly for the
unbiased one. Therefore, determination of P, is the final

step for the temporal sensor fusion. Note that this expands the
dimension of sensor fusion from one to two.

As one of solid candidate, we propose here to use the
auto-correlation as an index for the weight adjustment and
have the form,

+x

¥, =Y x(k)x,(j—k). (8)
k=-x
Depending on the correlation, P will be determined as
LP /
P, = )

k
2V,

j=1

[II. APPLICATIONS TO MOBILE ROBOTS

3.1 Complementary Usage for 3D Vision
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If the image for an object is well matched to one model in
the database, the position of the object can be obtained
directly. In a well-structured environment, it may be a usual
case. However, when the mobile robot is navigating in an
unstructured environment, it needs to recognize the
position/orientation of an object located in the middle of its
path, which is not known to the robot a priori.

Normal Vector
N(n,n,,n)
Base Plane

Fig. 3. Transformation of camera coordinates.

As a typical geometrical model for camera, a pinhole
model is widely used in vision application fields as shown in
Fig. 3. At the k-th sampling moment, a scene point O(X,Y,Z)
is captured by a camera on the mobile robot. The vectors from
the scene point to the k-th and (k-7)th camera perspective
center are represented by Vi and V., respectively. The
motion of mobile robot from (k-7)th moment to k-th moment
is represented by V. Now we can write the vector relationship
as

Via=Ve—V- (10)
This can be represented as a matrix form,
KXol o N2 Mgl % Yy
Ay [=B|r he M| Y |=| an
_f B e T “f Vs

where (xy, Yi, -f) and (X1, Yi.1,-f) represent the projection
of the scene point onto the camera image planes; V(vy, v, v3)
represents the translational motion of the mobile robot; r;; is
an element of the rotation matrix, R represents the relative
rotation between the two camera frames; & and f are

constants.

Now consider the reference base plane passing through the
scene point P with a direction vector N(n;, ny, n;); then the
range value, D, can be represented as

D=V,-N. (12)
This can be represented again as
D=fnx, +ny, ~nf). (13)
Now, Eq. (11) is reformulated as
X
Al Vi
-f
fv ha Ns ] X4 ¢ Y
=prn rn nll oy —% v, |:nl H, n}] A
o Ty hal-f Vi ~-f

Jang~Myung Lee

(14)
X, a, a, a,l| x
(a/ By |=|a, ay ay | v (15)
-f ay, ay, ayj-f

where a; =1, —(v,-n;/ D).

Expanding the matrices and dividing rows one and two by
row three gives

D(Rx,,+R f)=Cyx,,+C\f (16)
DRy, + R )=Coy +Cof (17
where R =r.x, +r,y, —r,fand C =v,(nx, +n,y, —nf).
In matrix form, these equations can be expressed as
AD =B
where A" =[a b],B" =[c d], a=Ryx,,+R [,
b=Ry_+R[> c=Cux,+Cf> and 4 = Cyyi +Cof -
Use of the pseudo-inverse matrix enables computation of

the range value, D which is associated with image point (xy,
¥«), and is written as,

(18)

D=(A"A)"A"B or (19)
(ac +bd)
a’+b’ 20)

So far, we have shown that using the consecutive two
image frames, the distance information of the scene point can
be obtained as using the stereo images at a certain moment.

3.2 Space and Time Fusion Filter
The space and time fusion consists of combining
information acquired at different instants and then deciding
the data. It implies that the system must be able to predict
objects state at each instant (see Figure 4).
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Fig. 4. An example of Space and Time fusion.

Given two estimators @, and ©, of ©, and the task is to

fuse then together to form one single “optimal” estimate 4.
Here, estimators are stochastic variables and are denoted by
capital letters.

Assume that © —-@ and §,-© arc independent

Gaussian distributed with zero mean and covariances P, and
P, , respectively. Now let X =(9—(:)l and y=6,-6, .
Then >, =P and Y., =P+ P, Hence

x=PB(R+P)(x,-%) 2n
6=6,+P(P+P)"'(6,-6) or (22)
0=(P" +P'V'[R0,+P,0,], (23)

with covariance
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R-P(+P) R =IR"+P'T". 24)

The fusion formula just means that estimates should be
weighted together, with weights inversely proportional to
their qualities/variances. It is easy to modify the fusion filter
to handle correlated estimators.

[V. ROBOT TYPE IN EXPERIMENTS SETUP

The mobile robot used in the experiments is an /RL-200]
developed in the /RL, PNU which is designed for an intellig
ent service robot.

This robot is shown in Figure 5 along with some of its
sensory components. Its main controller is made on system
clock 600 MHz, Pentium IHI Processor. The sensors,
16-ultrasonic and a robust odometry system are installed on
the mobile robot. Ultrasonic sensors and infrared sensors in
eight sides(25°) sense obstacles of close range, and the main
controller processes this information.

For visual information, a CCD camera is mounted on the
top of the mobile robot in order to sense obstacles or
landmarks of the side and the rear of mobile robot. And DC
servomotors are used for steering and driving of /RL-2001
robot.

Fig. 5. IRL-2001 rot and CCD camera system.

V. EXPERIMENTAL RESULTS

5.1 Robot Localization used Landmark pattern recognition

The service robot(/RL-2001) is commanded to follow the
environment as shown from (a) to (f) of Figure 7. We
performed the experiment for two cases.

To begin with, the 2-D lJandmark used by JRL-200] is
shown in Figure 6. The primary pattern of landmark is a 10cm
black square block on white background and a Scm square
block. The major reasons for choosing the square blocks are

¢ The projection of a square block in the image plane can
always be approximated by an ellipse, which is easy to
recognize using the elliptical Hough transformation
technique.

® A square pattern is more robust to noise and occlusion than
circular, polygonal patterns during template matching
process, even though all these patterns can be detected by
using Hough transformation technique.

Fig. 6. The landmark pattern and size used by JRL-2001.

The image corners are then automatically extracted by
camera parameters, and displayed on Figure 6 and the blue
squares around the corner points show the limits of the corner
finder window. The corners are extracted to an accuracy of
about 0.1 pixel.

The extrinsic parameters, relative positions of the
landmark with respect to the camera, are then shown in a form
of a 3D plot as Figure 8. And on Figure 9, every camera
position and orientation are represented by red pyramid,
therefore we can see the location and the orientation of a
mobile robot in the indoor environment.

U]

Fig. 7. A landmark locations detected by camera.

Fig. 8. Relative positions of the
landmark w.r.t the camera.

Fig. 9. Mobile robot position
and orientation.

To measure the relative distance of the landmark from the
mobile robot, we first measure the distance of image from the
fixed position in /RL-lab corridor. The predefined values of
the landmark defined in this section are given as follows the
origin of coordinates is equal to the origin of mobile robot, a
Y-axis is fit to the front of mobile robot and an X-axis is
perpendicular with Y-axis.

Table 1 lists the data measured in /RL-lab corridor. The
Left direction marks negative. From table 1, we find the
maximum and the minimum error on distance is 0.32 m and
0.13m, respectively.

It shows that the distance error becomes less and less by
frames, which composes the environment map. And so, we
can use it to measure the relative distance of the mobile robot.

Table 1. The result of relative distance (Dim.:m).

Frame World Image
Coordinate Coordinate Error
Number X .
Distance Distance

1 7.81 8.13 0.32
2 7.02 7.30 0.28
3 6.28 6.53 0.25
4 5.06 4.89 0.17
5 5.52 5.39 0.13
6 6.32 6.46 0.14

—130—



Tae-Seok Jin - Bong-Ki Lee *+ Soo-Min Park - Kwon-Soon

5.2 Mobile robot Navigation

Conventional fusion and STSF(a space and time sensor
fusion) have first been tested with simulation to show the
usefulness of STSF in two environments respectively. Startin
gat (0.3m, Sm, 0 degree), a virtual robot was driven around a
virtual square corridor one time. The walls in the artificial en
vironment are denoted by the real map, /RL corridor of PNU.

In each round, the robot stops a total of 12 times to rescan
the environment. The size of given map is 12m X 8m, the
total distance traveled is 12 + 8=20 meters, and the total num
ber of scanning points is 38. The comparison of simulation p
osition and direction at all stops is shown in Figure 10 and
Figure 11.

Figure 10 shows determination of the pointing vector base
d upon only current readings used conventional sensor fusio
n, i.e. spatial fusion. This robot was made to move randomly
within the confines of the above setup and at the region, Cc.
There are a little of difference between conventional fusion
and the new STSF. But at the region, 4c, the robot moves no
t keeping the distance between robot and wall constant and
have some difficult local minimum trap problems at some
places.

(b). Experiment in a corridor with wide space.
Fig. 10. Simulation for pointing vector based upon current readings.

Figure 11 shows multi-sensor STSF scheme is applied for
the measurement. And the results are compared to show the
superiority of the proposed scheme. The robot was allowed to
move keeping the distance between robot and obstacles
constant at the region, 4, and B,

The region B, shows the improvement in steering at cor

ner. And the simulation experiments show that a mobile rob
ot, utilizing our scheme, can avoid obstacles and reach a giv
en goal position in the workspace of a wide range of geomet
rical complexity. Experiments results using new STSF, show
the robot can avoid obstacles (boxes and trash can) and foll
ow the wall. Figure 10 through Figure 11 demonstrate one o
f many successful experiments. The algorithm is very
effective in escaping local minima encountered in laboratory
environments.

Lee - Jang—-Myung Lee

(b). Experiment in a corridor with wide space.
Fig. 11. Simulation used a STSF scheme.

The mobile robot navigates along a corridor with 3m width
and with some obstacles as shown in Figure 10 and Figure 11.
It demonstrates that the mobile robot avoids the obstacles
intelligently and follows the corridor to the goal.

Also notice that especially at the region, Ar _ the errors of
the robot position converse to zero as the same reason,
referring to the simulation result and experimental result in
Figure. 10-(a) and 10-(b) respectively, Figure 11-(a) and
11-(b) represent the reference of robot direction produced by
the proposed STSF. Finally, the robot is tested to follow the
whole trajectory from start position to final position as shown
in Figure 10 and Figure 11.

Robot's Position: Experimental Result
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Fig. 12. Robot’s position experiment results.

Robot's Direction: Fxperimental Resuh
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Fig. 13. Robot’s direction experiment results.

The experimental results of the robot status for distance
between mobile robot and corridor wall under such control
strategy are given in Figure 12 and 13.
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5.3. Experimental Comparison

Compsrisen of errors slong the robot irajeciory
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Fig. 14. Comparison of errors along the robot trajectory.

Table 4. Summary of the solution obtained by the different

approaches.
Maximum errors (x, and ¢, ), Distance d,,,

and Angular ¢,e1 Error growing-rates, and N2, results.

max ym(l.\f k

Odometry VFF STSF
Xppe (MUM) 1622.22 426.44 288.02
Vimax (M) 2144.70 355.62 202.65
P (deg) 27.20 4.44 393
d,,;(mm/m) 474 108 78
&,.;(deg/ m) 0.432 0.144 0.114
Nesi (%) 100 6.7 97.2

Table 4 compares the largest errors obtained by the STSF
method with the approach neglecting correlations. Clearly,
the STSF method obtained estimations for the mobile robot
localization with an upper bound of around 5.9 mm/m of the
total trajectory length for the distance error and 0.04°m for
the orientation error, which represented an order of
magnitude below dead-reckoning errors. Also, the location
uncertainty of the map features was not underestimated. with

a compatibility of N%es = 97% .

Therefore, pairings between local observations at time &
and previously stored knowledge up to time k-1 were found at
each point along the robot trajectory even when the vehicle
returned to previously learned places of the navigation area.
An average of 74% of the number of available observations
were matched with previous known features. Figure 27
compares the real errors along the robot path, obtained by
each approach. The highest errors correspond to
odometry-based navigation, while the smallest correspond to
the STSF method. From the Figure 27 note how the location
uncertainty of the robot decreases when the vehicle revisits

previously learned places (i.e., from trajectory point 40
onwards).

V1. CONCLUSIONS

In this paper, a new sensor fusion concept, STSF(space and
time sensor fusion), was introduced. The effectiveness of
STSF was demonstrated through the examples, simulations
and experiments. To generate complete navigation
trajectories without a prior information on the environment,
not only the data from the sensors located at different places
but also the previous sensor data are inevitably utilized.
Although we have tried using the sonar system for map
building and navigation in indoor environment, the result
from the above experiments clearly shows that by utilizing
both systems and applying active sensing to adapt to differing
situation, a high level of competent collision avoidance
behavior by STSF can be achieved.

Sonar system and visual systems are cooperatively utilized
for collision avoidance based upon STSF such that a mobile
robot was successfully navigated in an unstructured
environment as well as in a structured environment. Based on
these results, further experiments will aim at applying the
proposed tracking technique to the multi-sensor fusion
scheme which is applied to the control of a mobile robot in an
unstructured environment.
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