• Title/Summary/Keyword: parameter insensitive

Search Result 81, Processing Time 0.043 seconds

The Position Control of PMSM using Optimal Sliding-mode Control (최적 슬라이딩모드 제어에 의한 영구자석 등기전동기의 위치제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Jung, Jae-Ruon;Lee, Byung-Song;Kim, Su-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.145-147
    • /
    • 1993
  • This paper described an optimal control technique for position control of an inverter-fed PMSM drive. A control system of PM machine for position, speed and current control based on optimal sliding mode control system is discussed. This is an effective means to keep a system insensitive to parameter variation, disturbance and chattering reduction. The main purpose of the control is to improve the dynamic response of the PMSM with the load of the inertial plant. The optimal sliding mode control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system, Simulation results are given and discussed.

  • PDF

Neck Formation in Drawing Processes of Fibers

  • Chung, Kwansoo;Yoon, Hyungsop;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.140-143
    • /
    • 2001
  • To better understand the formation of necking in drawing processes of fibers, strain distributions during drawing processes have been analyzed. For simplicity, one-dimensional incompressible steady flow at a constant temperature was assumed and quasi-static model was used. To describe mechanical properties of solid polymers, non-linear visco-plastic material properties were assumed using the power law type hardening and rate-sensitive equation. The effects of various parameters on the neck formation were matematically analyzed. As material property parameters, strain-hardening parameter, visco-elastic coefficient and strain-rate sensitivity were considered and, for process parameters, the drawing ratio and the process length were considered. It was found that rate-insensitive materials do not reach a steady flow state and the rate-sensitivity plays a key role to have a steady flow. Also, the neck formation is mainly affected by material properties, especially for the quasi-static model. If the process length changes, the strain distribution was found to be proportionally re-distributed along the process line by the factor of the total length change.

  • PDF

Idetification of Parameter for Bearing Using Sensitivity Analysis Method (민감도 해석 기법을 이용한 베어링 파라미터 규명)

  • 이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.354-357
    • /
    • 2001
  • The developed method is proposed to identify rotor dynamic parameters. The method known imbalance vector, which renders over-determined linear system equation. The solution of the system equation can be obtained using least square method. The sensitivity analysis is performed to extract optimized solution, which is considered to be insensitive to inherent measurement errors. As an alternative approach to identify the parameters of bearings and rotor, adding a known imbalance to the rotor produces another equation set to make the system equations over-determined and linearly independent.

  • PDF

Identification of Parameter for Bearing Using Orbit Shapes (궤도형상 데이터를 이용한 베어링 파라미터 규명)

  • 이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.672-675
    • /
    • 1997
  • This paper presents the identification of rotor dynamic parameters. The solution of the system equation can be obtained using least square method. The sensitivity analysis is performed to extract optimized solution, which is considered to be insensitive to inherent measurement errors. The cosine and sine term of orbit shapes can be obtained by experiment the orbit analysis at a different speed after doing orbit analysis at an arbitrary selected speed. This values measured time domain used to search the stiffness and damping coefficients of rotor bearing.

  • PDF

Utilization of support vector machine for prediction of fracture parameters of concrete

  • Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2012
  • This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.

Position Control of Direct Drive Brushless Motor using The Adaptive Variable Structure Control with Nonliner Switching Surfaces (비선형 적응 가변 구조 제어기를 가지는 브러쉬 없는 직접 구동형 서보 모터의 위치 제어에 관한 연구)

  • Lee, Dae-Sik;Lee, Sang-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.69-71
    • /
    • 1997
  • The direct drive motor is directly coupled by load. So, it is directly affected by load and disturbances. To control the direct drive motor, a robust controller is need. The main feature of variable structure system is that system trajectories are robust and insensitive to parameter variations and disturbances in the sliding mode. In this paper, adaptive variable structure controller, is used for the BLDD SM(Brushless Direct Drive Servo Motor) control. The chattering problem is reduced by using the saturation function.

  • PDF

Design Parameter Deduction for Slotless Permanent Magnet Synchronous Motor/Generator (슬롯리스 영구자석 동기 전동/발전기를 위한 설계변수 도출)

  • Jang, Seok-Myeong;Lee, Un-Ho;You, Dae-Joon;Ko, Kyoung-Jin;Lee, Jung-Pill
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.53-55
    • /
    • 2008
  • In high speed applications, the slotless permanent magnet(PM) motors appear an attractive solution, being almost insensitive to magneto-motive force harmonics and to pulse width modulation(PWM) current ripple and exhibiting lower stator iron losses and rotor losses (significant with square wave current control). So, this paper deals with methods for design of permanent magnet synchronous motor/generator.

  • PDF

State Dependence of Activation Energies for High Temperature Creep of A17075 Alloy (A17075합금의 고온 크리프 활성화에너지의 상태의존성)

  • 조용이;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.131-140
    • /
    • 1993
  • The activation energy for high temperature creep is associated with stresses, temperatures, straians And the creep strain appears to be a function of a temperature, compensated time, namely $te^{-}$.DELTA.H/RT/, and the stress. In fact this functional relation appears to be isomorphic to material structure by x-ray analyses. Applying this functional relation, the dependance of activation energy for A17075 creep was investigated. The activation energy for creep is insensitive to stress, temperature, structure, and strain. And phenomenological model agrees with experimental creep data.

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.

A Study on Position Servo Drive with Sliding Mode Control (슬라이딩 모우드를 이용한 위치 서보 운전에 관한 연구)

  • Won, Jong-Soo;Min, Choon-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.65-68
    • /
    • 1988
  • In this paper the application of variable structure control with sliding modes for improving the dynamic response and eliminating chattering of DC servo motor drive is presented. Sliding mode control is an effective means to keep a system insensitive to parameter variation and disturbances. In this method the control structure is changed discontinuously to farce the system dynamic to follow a predetermined trajectory. However the discontinuous change in control structure causes the controller input to chatter and gives non-zero steady state error. To overcome this problem, the discontinuous sign function is replaced by a proper continuous function, and presented through experiment.

  • PDF