• Title/Summary/Keyword: parallel robot

Search Result 266, Processing Time 0.021 seconds

The Changes in the Future War Patterns and ROK's Response (미래 전쟁양상의 변화와 한국의 대응)

  • Kim, Kang-nyeong
    • Korea and Global Affairs
    • /
    • v.1 no.1
    • /
    • pp.115-152
    • /
    • 2017
  • This paper is to analyse the changes in the future war patterns and ROK's response. To this end the paper is composed of 5 chapters titled instruction; concept, characteristics, types, and evolution of war; changes in the war patterns of the future; Korea's response strategies for the future war. Truth can be immutable, but everything else changes. War has begun with human history, and today there are still wars in places all over the world. As ages change from agricultural society to industrial society to knowledge and information society, aspects(patterns) of war have also changed. Future warfare includes the 5th dimensional war(in the ground, the sea, the air, the universe, the cyber), the network-centric, the precision strike, the rapid maneuver, the non-gunpowder, the non-lethal, the unmanned robot, the informational & cyber, the asymmetric, the non-linear, and the parallel etc. In response to these changes in the pattern of wars, the ROK military should seek (1)to build a future-oriented military force, (2)to continuously develop military innovation and preparedness, and (3)to develop and establish a paradigm for acquiring the power of technology. A Roman strategist, Vegetius said, "If you wish peace, prepare for war." This is a universally accepted maxim in international society today. We must never forget that peace we desire is given when we have the will and ability to keep.

Development of a Root-Removed Splice Grafting System for Cucurbitaceous Vegetables (1) - Analysis of Grafting Process and System Setting - (박과채소용 단근합접 접목시스템 개발(1) -작업공정 분석과 시스템 설정 -)

  • Kang, C.H.;Lee, S.K.;Han, K.S.;Lee, Y.B.;Choi, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.453-461
    • /
    • 2008
  • This study was conducted to develop a root-removed splice grafting system for cucurbitaceous vegetables, mainly watermelon and cucumber seedlings, for the seedlings factories where currently most of seedlings grafting works are carried out by manual works. The major results of the study are as follows. The dimensions of rootstocks and scions, except cotyledon width, of root- removed splice grafting of watermelon and cucumber were shown to be varied within the 2.5-fold range. The growth status of seedlings were not consistent in terms of cotyledon sprouting direction and angle which were considered as one of the important factors for in root-removed splice grafting. The grafting work of root-removed splice for grafted watermelon and cucumber could be divided by four sub-operations: seedling supplying, cutting, clipping and potting, while a part or all root of the rootstock was removed in the seedlings supplying operation. The cutting angles of the rootstock and scion were $34-45^{\circ}$ and $20-45^{\circ}$, respectively, while the stem length of the scion varied from 6 mm to 12 mm. The splices of rootstock and scion were heaped up in parallel and then fixed by a clip. It indicated that the ideal grafting system, adopting conventional grafting processes of seedlings specifications as well as conventionally manual root-removed splice grafting method, performed very well for seedlings gripping and transporting, supplying clip, clipping and discharging grafted seedlings while workers supplied seedlings to the semi-automatical system.

Performance Improvement of Material Recognition Sensor Using Cubic Spline Interpolation (Spline보간식을 이용한 물체재질인식센서의 성능개선)

  • Park, J.G.;Lim, Y.C.;Cho, K.Y.;Kim, Y.G,;Chang, Y.H.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • This paper describes a noble robot sensor designed to recognize an unknown material by measuring its thermal conductivity on various ambient temperature. The excellent agreement has been obtained between the measured sensor temperature and the calculated sensor temperature by cubic spline interpolation. The active sensor to measure the thermal conductivity of a gripped object was designed and the software program using C language to discriminate objects made of different materials was developed. The temperature response characteristics of different materials on the same ambient temperature was investigated. The temperatures on three comparing points varied linearly and had parallel relation with one another in accordance with various ambient temperature.

  • PDF

Intelligent Digital Redesign for Dynamical Systems with Uncertainties (불확실성을 갖는 동적 시스템에 대한 지능형 디지털 재설계)

  • Cho, Kwang-Lae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.667-672
    • /
    • 2003
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may also contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear systems. An extended parallel distributed compensation(EPDC) technique is then used to design a fuzzy-model-based controller for both stabilization and tracking. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using an integrated intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, The single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

The GEO-Localization of a Mobile Mapping System (모바일 매핑 시스템의 GEO 로컬라이제이션)

  • Chon, Jae-Choon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.555-563
    • /
    • 2009
  • When a mobile mapping system or a robot is equipped with only a GPS (Global Positioning System) and multiple stereo camera system, a transformation from a local camera coordinate system to GPS coordinate system is required to link camera poses and 3D data by V-SLAM (Vision based Simultaneous Localization And Mapping) to GIS data or remove the accumulation error of those camera poses. In order to satisfy the requirements, this paper proposed a novel method that calculates a camera rotation in the GPS coordinate system using the three pairs of camera positions by GPS and V-SLAM, respectively. The propose method is composed of four simple steps; 1) calculate a quaternion for two plane's normal vectors based on each three camera positions to be parallel, 2) transfer the three camera positions by V-SLAM with the calculated quaternion 3) calculate an additional quaternion for mapping the second or third point among the transferred positions to a camera position by GPS, and 4) determine a final quaternion by multiplying the two quaternions. The final quaternion can directly transfer from a local camera coordinate system to the GPS coordinate system. Additionally, an update of the 3D data of captured objects based on view angles from the object to cameras is proposed. This paper demonstrated the proposed method through a simulation and an experiment.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF