• 제목/요약/키워드: parallel resonant

검색결과 258건 처리시간 0.037초

Analysis of partial resonant AC-DC converter for high power and power factor

  • Mun, Sang-Pil;Kim, Si-Lyur;Lee, ki-Youn;Hyun-Woo;Katsunori taniguchi, Katsunori-Taniguchi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.920-927
    • /
    • 1998
  • This paper proposed that an Analysis of a partial resonant AC-DC converter for high power and power factor operates with four choppers connecting to a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of lose-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used

  • PDF

무접점 전력용 변환기의 다중공진형 토폴로지 비교 (Comparison of Higher-Order Resonant Topologies for Contact-less Power Converter Systems)

  • 다니엘;박종후
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.323-324
    • /
    • 2014
  • A higher-order power converter topology for an extremely low coupling (less than 0.15) transformer with high efficiency and wide air-gap (23 mm) is presented in this paper. Among the typical resonant converter topologies for contact-less power transferring systems, Series-Series Resonant Converter (SSRC) and Series-Parallel Resonant Converter (SPRC) are widely used in number of power electronic applications. However, when coupling coefficient of a transformer is seriously low (k<0.5), the series-series resonant converter will possibly operate at short circuited condition because of the small magnetizing impedance. To solve this problem, a modified and improved topology of seventh-order resonant converter for contact-less power converter system is proposed and the results are presented.

  • PDF

보조부분 공진 회로를 이용한 삼상 PWM 인버터의 고조파 제거 (Elimination of harmonics in three-Phase PWM inverter using auxiliary partial resonant circuit)

  • 서기영;이현우;김영문;문상필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.137-140
    • /
    • 1998
  • A new SPWM inverter using three-phase boost converter by auxiliary partial resonant with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the switch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new Partial resonant boost converter achieves zero-voltage switching (ZVS) or zero-current switching (ZCS) for all switch devices without increasing their voltage and current stresses. This paper introduces elimination of low-order harmonics compared with conventional SPWM inverter and SPWM inverter using three-phase boost converter by auxiliary Partial resonant.

  • PDF

Multiple Buck-Chopper using Partial Resonant Switching

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Chun Jung-Ham
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.189-192
    • /
    • 2001
  • This paper proposed that an AC-DC converter system using multiple buck-chopper operates with four choppers connecting to a number of parallel circuits. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

ZVS를 이용한 공진전류 주입형 고주파 공진 인버터의 특성해석 (Characteristic analysis of the resonant current injection type high frequency resonant inverter using ZVS)

  • 원재선;김해준;조규판;김동희;배영호;민병재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1038-1040
    • /
    • 2001
  • A half-bridge type resonant current injection type high frequency resonant inverter using ZVS(Zero-Voltage-Switching) used as power source of induction heating at high frequency is presented in this paper. This proposed inverter can reduce distribution of the switching current because of using the current of serial resonant circuit to the input current of the parallel one. The analysis of the proposed circuit is generally described by using the normalized parameters, the principle of basic operating and the its characteristics are estimated by the parameters such as switching frequency and load resistance. According to the calculated characteristics value, this paper proves the validity of theoretical analysis through the Pspice.

  • PDF

제안된 평면변압기를 이용한 LLC 공진컨버터 (LLC Resonant Converter using Proposed Planar Transformer)

  • 이승민;김은수;정봉근;이재삼;김유선;허동영
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.121-128
    • /
    • 2012
  • In this paper, a new planar transformer with a novel core configuration that can regulate the leakage inductance is proposed and described in detail. In order to design the slim size power system for flat panel TV, Two planar transformers applied to LLC resonant converter are connected in series at primary and in parallel by the center-tap winding at secondary. In this paper, a 300W low profile LLC resonant converter was built and tested to verify the proposed planar transformer.

보조 부분 공진 회로를 이용한 고역률 고효율 삼상 부스트 컨버터 (A High Power Factor and High Efficiency Three Phase Boost Converter using auxiliary Partial Resonant circuit)

  • 서기영;권순걸;이현우;김영문
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권4호
    • /
    • pp.212-218
    • /
    • 1999
  • A new partial resonant three phase boost converter with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the swithch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new auxiliary partial resonant boost converter achieves zero-voltage switching(ZVS) or zero-current switching(ZCS) for all switch devices without increasing their voltage and current stresses.

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.