• Title/Summary/Keyword: parallel hybrid vehicle

Search Result 76, Processing Time 0.023 seconds

Design of a Parallel Hybrid Vehicle Powertrain with Semi-Spherical CVT (구면무단변속기를 적용한 병렬형 하이브리드차량 동력전달계 설계)

  • Kim, J.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-23
    • /
    • 2009
  • 구면무단변속기(SS-CVT)는 구조가 간단하여 변속기구의 부피와 무게를 기존의 변속기구에 비하여 줄일 수 있으며, 별도의 클러치 없이 출력축의 정회전, 역회전 그리고 중립상태 등을 구현할 수 있다. 본 연구에서는 이러한 구면무단변속기의 기구적 특징과 변속메카니즘을 이용하여 직류모터와 가솔린엔진을 장착한 병렬형 하이브리드차량의 동력전달계를 제안하고자 한다. 이를 위하여 먼저 구면무단변속기의 작동원리에 대해 설명하고 전용 실험장치를 제작하여 무단변속성능을 검증하였다. 또한 직류모터를 보조 동력원으로 사용하는 병렬형 하이브리드차량 동력전달계의 설계를 위해 연결기어비와 구면무단변속기의 변속비를 차량주행성능에 맞추어 설정하였으며, 이를 차량가속성능의 수치 시뮬레이션을 통하여 분석하였다. 시뮬레이션 결과를 바탕으로 구면무단변속기의 하이브리드차량 동력전달계의 적용가능성을 검증하였으며, 연구결과로 선정된 구성요소의 설계파라미터를 이용하여 시작차량을 제작하였다.

  • PDF

HARDWARE IN THE LOOP SIMULATION OF HYBRID VEHICLE FOR OPTIMAL ENGINE OPERATION BY CVT RATIO CONTROL

  • Yeo, H.;Song, C.H.;Kim, C.S.;Kim, H.S.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.201-208
    • /
    • 2004
  • Response characteristics of the CVT system for a parallel hybrid electric vehicle (HEV) are investigated. From the experiment, CVT ratio control algorithm for the optimal engine operation is obtained. To investigate the effect of the CVT system dynamic characteristics on the HEV performance, a hardware in the loop simulation (HILS) is performed. In the HILS, hardwares of the CVT belt-pulley and hydraulic control valves are used. It is found that the engine performance by the open loop CVT ratio control shows some deviation from the OOL in spite of the RCVs open loop control ability. To improve the engine performance, a closed loop control of the CVT ratio is proposed with variable control gains depending on the shift direction and the CVT speed ratio range by considering the nonlinear characteristics of the RCV and CVT belt-pulley dynamics. The HILS results show that the engine performance is improved by the closed loop control showing the operation trajectory close to the OOL.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

TRADE-OFFS BETWEEN FUEL ECONOMY AND NOX EMISSIONS USING FUZZY LOGIC CONTROL WITH A HYBRID CVT CONFIGURATION

  • Rousseau, A.;Saglini, S.;Jakov, M.;Gray, D.;Hardy, K.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.47-55
    • /
    • 2003
  • The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE by evaluating advanced automotive technologies in a systems context. ha has developed a unique set of compatible simulation tools and test equipment to perform an integrated systems analysis project from modeling through hardware testing and validation. This project utilized these capabilities to demonstrate the trade-off in fuel economy and Oxides of Nitrogen (NOx) emissions in a so-called ‘pre-transmission’ parallel hybrid powertrain. The powertrain configuration (in simulation and on the dynamometer) consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuously Variable Transmission (CVT) and an electric drive motor coupled to the CVT input shaft. The trade-off is studied in a simulated environment using PSAT with different controllers (fuzzy logic and rule based) and engine models (neural network and steady state models developed from ANL data).

STUDY ON IMPROVEMENT OF POWER TRAIN MECHANISM FOR HYBRID ELECTRIC (하이브리드 전기 자동차의 동력전달 메커니즘 개선에 관한 연구)

  • Choi, Chang-Won;Chun, Soon-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1275-1277
    • /
    • 2001
  • Growing environmental and economic concerns have lead to recent efforts to produce more fuel efficient and lower emissions vehicles. Hybrid Electric Vehicles(ab. HEVs) are the most promising designs to reach these goals. In this paper, We present an of a Power Tra the Hybrid Electric Vehicle(at. PTHEV). We int a different concept of PTHEV than in the pr research of PTHEV. This PTHEV includes benefits of serial(Minimum emission and Max efficiency) and parallel(Maximum Power efficiency by direct drive engine) PTHEV. Also mechanism can avoid driving the engine in the speed regions.

  • PDF

Depth Control of a Hybrid Underwater Glider in Parallel with Control of Horizontal Tail Wing (수평 꼬리 날개의 제어를 병행하는 하이브리드 수중 글라이더의 깊이 제어)

  • Joo, Moon Gab
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • An underwater glider is a type of autonomous unmanned vehicle and it advances using a vertical zig-zag glide. For this purpose, the position of an internal battery is regulated to control its attitude, and the amount of water in a buoyancy bag is regulated to control the depth. Underwater glider is suitable for a long-distance mission for a long time, because the required energy is much smaller than the conventional autonomous unmanned vehicle using propeller propulsion system. In this paper, control of horizontal tail wing is newly added to the conventional battery position and buoyancy control. The performance of the proposed controller is shown through Matlab simulation.

The Scheme for Efficient Driving of Engine/Generator-Battery in Series HEV (직렬형 HEV의 엔진/발전기-배터리 연계운전 방안)

  • 박영수;허민호;안재영;강신영;김광헌
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.423-426
    • /
    • 1999
  • This paper describes a driving scheme of the series hybrid electric vehicle that we have developed. Both series HEV and parallel HEV are well known. We chose series HEV because it provides good energy efficiency in urban driving and operates in all-electric mode in performance. And engine-Generator is driven at constant speed with constant load to maintain the low emission. And the battery supplies power during high-load and receive energy during low-load

  • PDF

Operation Algorithm for a Parallel Hybrid Electric Vehicle with a Relatively Small Electric Motor

  • Kyoungcheol Oh;Kim, Donghyeon;Kim, Talchol;Kim, Chulsoo;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the power assist and the equivalent fuel algorithms are proposed. In the power assist algorithm, an electric motor is used to assist the engine which provides the primary power source. Tn the equivalent fuel algorithm, the electric energy stored in the battery is considered to be an equivalent fuel, and an equivalent brake specific fuel consumption for the electric energy is proposed. From the equivalent fuel algorithm, distribution of the engine power and the motor power is determined to minimize the fuel consumption for a given battery state of charge (SOC) and a required vehicle power. It is found from the simulation results that the fuel economy and the final battery SOC depend on the motor discharge energy and it is the best way to charge the battery only by the regenerative braking, not by the engine to improve the overall fuel efficiency of the HEV with the relatively small motor.

Forward kinematic analysis of a 6-DOF parallel manipulator using genetic algorithm (유전 알고리즘을 이용한 6자유도 병렬형 매니퓰레이터의 순기구학 해석)

  • 박민규;이민철;고석조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1624-1627
    • /
    • 1997
  • The 6-DOF parallel manipulator is a closed-kindmatic chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. Because of its advantage, the parallel manipulator have been widely used in many engineering applications such as vehicle/flight driving simulators, rogot maniplators, attachment tool of machining centers, etc. However, the kinematic analysis for the implementation of a real-time controller has some problem because of the lack of an efficient lagorithm for solving its highly nonliner forward kinematic equation, which provides the translational and orientational attitudes of the moveable upper platform from the lenght of manipulator linkages. Generally, Newton-Raphson method has been widely sued to solve the forward kinematic problem but the effectiveness of this methodology depend on how to set initial values. This paper proposes a hybrid method using genetic algorithm(GA) and Newton-Raphson method to solve forward kinematics. That is, the initial values of forward kinematics solution are determined by adopting genetic algorithm which can search grobally optimal solutions. Since determining this values, the determined values are used in Newton-Raphson method for real time calcuation.

  • PDF

A Study on Regenerative Braking for a Parallel Hybrid Electric Vehicle

  • Jang, Seong-Uk;Ye, Hun;Kim, Cheol-Su;Kim, Hyeon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1490-1498
    • /
    • 2001
  • In this paper, a regenerative braking algorithm is presented and performance of a hybrid electric vehicle (HEV) is investigated. The regenerative braking algorithm calculates the available regenera tive braking torque by considering the motor characteristics, the battery SOC and the CVT speed ratio. When the regenerative braking and the friction braking are applied simultaneously, the friction braking torque corresponding to the regenerative braking should be reduced by decreasing the hydraulic pressure at the front wheel. To implement the regenerative braking algorithm, a hydraulic braking module is designed. In addition, the HEV powertrain models including the internal combustion engine, electric motor, battery, CVT and the regenerative braking system are obtained using AMESim, and the regenerative braking performance is investigated by the simulation. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC which results in the improved fuel economy. To verify the regenerative braking algorithm, an experimental study is performed. It is found from the experimental results that the regenerative braking hydraulic module developed in this study generates the desired front wheel hydraulic pressure specified by the regenerative braking control algorithm.

  • PDF