• Title/Summary/Keyword: parallel and serial robot

Search Result 22, Processing Time 0.04 seconds

Performance of Liquid-Cooled Cold Plates for Multiple Heat Sources in a Humanoid Robot (인간형 로봇 내부의 다중 열원에 대한 수냉식 냉각판의 성능)

  • Karng, Sarng-Woo;Kim, Seo-Young;Moon, Jong-Min;Hwang, Kyu-Dae;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2053-2058
    • /
    • 2008
  • It was investigated thermal performances on two array types of a serial circulation and a two-way parallel circulation for six water-cooled cold plates covered with non-metallic material (polycarbonate, PC) to reduce weight of the cooling devices for humanoid robot cooling. Six cold plates attached on $10{\times}10\;mm^2$ copper base : $0.5{\times}0.5\;mm^2$ pin-finned surfaces of 1.5 mm high with 0.5 mm array spacing, was mounted on six copper heating blocks with isothermal conditions of $50{\sim}90^{\circ}C$, respectively. In order to compare thermal characteristics according to two circulation types, the surface temperatures of heating blocks and the cooling water temperatures at inlets and outlets of cold plates were measured. From the results, it was found that a two-way parallel circulation was better performance than a serial circulation in terms of total thermal resistance, total heat transfer rate, and surface temperature rises from $1^{st}$ heating block to last one for six multiple cold plates.

  • PDF

DESIGN AND ANALYSIS FOR THE SPECIAL SERIAL MANIPULATOR

  • Kim, Woo-Sub;Park, Jae-Hong;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1396-1401
    • /
    • 2004
  • In recent years, robot has been used widely in industrial field and has been expanded as a result of continous research and development for high-speed and miniaturization. The goal of this paper is to design the special serial manipulator through the understanding of the structure, mobility, and analysis of serial manipulator. Thereafter we control the position and orientation of end-effector with respect to time. In general, a structure of industrial robot consists of several links connected in series by various types of joints. Typically revolute and prismatic joints. The movement of these joints is determined in inverse kinematic analysis. Compared to the complicated structure of parallel and hybrid robot, open loop system retains the characteristic that each link is independent and is controlled easily by AC servomotor that is used to place the robot end-effector toward the accurate point with the desired speed and power while it is operated by position control algorithm. The robot end-effector should trace the given trajectory within the appropriate time. The trajectory of 3D end-effector model made by OpenGL can be displayed on the monitor program simultaneously

  • PDF

Coordinated Control of a Macro/Micro Robot with Separate Controllers (제어기가 분리 설계된 매크로/마이크로 로봇의 공동작용 제어)

  • Hwang, Jung-Hun;Kwon, Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-316
    • /
    • 2000
  • A coordination method for a macro/micro robot with separate controllers is proposed and evaluated. The macro/micro robot system generally has independent controllers for the macro and the micro robot respectively. A controller for the coordination of the macro and the micro robot has been designed based on the stable independent controller of each system. The method and trajectory generation method is also proposed to track the moving desired position rapidly. The control method and trajectory generation method is also proposed to track the moving desired position rapidly. The control strategy has been implemented to the macro/micron robot system to evaluate the performance. The experimental results show that the proposed method for maintaining the micro robot within its workspace has uniform performance over the various range of the bandwidth and the proposed trajectory generator is shown to be efficient.

  • PDF

Development of the Pneumatic Service Robot with a Hybrid Type (하이브리드형의 공압 서비스 로봇의 개발)

  • Choi, Cheol-U;Choi, Hyeun-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.686-691
    • /
    • 2001
  • In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified.

  • PDF

Development of Hybrid Manipulator for Melon Harvesting Works (멜론 재배작업용 하이브리드 매니플레이터 개발)

  • Kim, Y.Y.;Cho, S.I.;Hwang, H.;Hwang, K.Y.;Park, T.J.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.52-58
    • /
    • 2006
  • Various robots were developed for harvesting fruits and vegetables. However, each robot was designed for a specific task such as harvesting apples or vegetables. This has been a big hurdle in application of robots to agriculture. A new type of hybrid manipulator with both parallel and serial joints was developed and designed to apply to various kinds of field operations. The hybrid manipulator had 2 extra degree of freedom in serial joints which made it flexible in switching one to the other type of hybrid manipulator, for example, PUMA to SCARA. And it was designed to harvest heavy fruits such as musky melons or water melons even behind leaves or branches of tree. This hybrid manipulator showed less than $\pm1mm$ position error. It was concluded that the hybrid manipulator was an effective and feasible tool to perform various works and to increase working performance.

Locomotion Control of Biped Robots with Serially-Linked Parallel Legs (이중 병렬형 다리 구조를 가진 2족보행로봇의 보행제어)

  • Yoon, Jung-Han;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.683-693
    • /
    • 2010
  • In this paper, we propose a new parallel mechanism for the legs of biped robots and the control of the robot's locomotion. A leg consists of two 3-DOF parallel platforms linked serially: one is an orientation platform for a thigh and the other is the 3-DOF asymmetric parallel platform for the shank. The desired locomotion trajectory is generated on the basis of the Gravity-Compensated Inverted Pendulum Mode (GCIPM) in the sagittal direction and the Linear Inverted Pendulum Mode (LIPM) in the lateral direction, respectively. In order to simulate the ground reaction force, a 6-DOF elastic pad model is used underneath each of the soles. The performance and effectiveness of the proposed parallel mechanism and locomotion control are shown by the results of computer simulations of a 12-DOF parallel biped robot using $SimMechanics^{(R)}$.

A kinematic Analysis of Binary Robot Manipulator using Genetic Algorithms

  • Gilha Ryu;Ihnseok Rhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.76-80
    • /
    • 2001
  • A binary parallel robot manipulator uses actuators that have only two stable states being built by stacking variable geometry trusses on top of each other in a long serial chain. Discrete characteristics of the binary manipulator make it impossible to analyze an inverse kinematic problem in conventional ways. We therefore introduce new definitions of workspace and inverse kinematic solution, and the apply a genetic algorithm to the newly defied inverse kinematic problem. Numerical examples show that our genetic algorithm is very efficient to solve the inverse kinematic problem of binary robot manipulators.

  • PDF

Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis (관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발)

  • 최현석;최철우;한창수;한정수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • In this paper. the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantages of good compliance , high Payload-to-weight and payload-to-volume ratios. high speed and force capabilities. Using pneumatic actuators. which have low stiffness. the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into Positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory. the Pneumatic service robot is evaluated and verified.

Design and Experimental Report for the Special 3D.O.F Robot Manipulator

  • Moon, Dong-Hee;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2000-2003
    • /
    • 2003
  • In recent years, robots have been used widely in industrial field and have been expanded as a result of continuous research and development for high-speed and miniaturization. The goal of this paper is to design the serial manipulator through kinematic analysis and to control the position and orientation of end-effector with respect to time. In general, a structure of industrial robot consists of several links connected in series by various types of joints, typically revolute and prismatic joints. The movement of these joints is determined in inverse kinematic analysis. Compared to the complicated structure of parallel and hybrid robot, open loop system retains the characteristic that each link is independent and is controlled easily. AC servo motor is used to place the robot end-effector toward the accurate point with the desired speed and power while it is operated by position control algorithm. The robot end-effector should trace the given trajectory within the appropriate time. The trajectory of end-effector can be displayed on the monitor of general personal computer through Opengl program.

  • PDF

Kinematic of 7 D.O.F. Exoskeleton-Type Master Arm Estimating Human Arm's Motion (사람팔의 운동을 추정하는 7자유도 골격형 마스터암의 기구학 연구)

  • Sin, Wan-Jae;Park, Jong-Hyun;Park, Jahng-Hyeon;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.796-802
    • /
    • 2000
  • A master-slave system for teleoperation is usually used to control the robor's motion on remote place such as abyss, outer space etc.. When the slave robot is a humanoid one, it can make a better performance if the configuration of the master arm is similar to that of the slave arm and of the human. The master arm proposed in this paper has a type to be put on the human arm, that is, the exoskeleton type, and has a combination of serial joint and parallel mechanism imitating the human's arm structure of muscles and bones, so called hybrid mechanism so that it can follow arm's movement effectively. But it is easy to solve the forward kinematis of the parallel structure because relating equations are implicit functions. In order to solve that, the virtual joint angle corresponding to human arm's joint is introduced and a sequential computation step is employed in calculating virtual joint angles and the posture of the end effector. Also validity is checked up through computational simulation.

  • PDF