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ABSTRACT

A binary parallel robot manipulator uses aclualors that have only two siable slates being buil by stacking variable
geometry trusses on op of each other in a long serial chain, Discrete characteristics of the binary manipulator make
il impessiblc to analyze an inverse kinematic problem in conventional ways. We thercfore mtroduce new definitions
of warkspace and inverse kinematic selution, and then apply a genelic algorithm to the newly defined inverse kinematic
problem. Numerical examples show that our genelic algorithm is very eflicient (o solve the inveirse kingmatic problem

of binary robot manipulators,

Keywords: binary robol manipulator, verse kinematic analysis, penetic algorithm, workspace

manipulalor, If can be generated by optimization scheme

1. Introduction considering a curvature limit of a binary manipulator| 4]
The workspace of binary manipulatar is not described
The traditional robol manipulators are actuated with by conventional way because ol ils discrete nature Ref.
continuous-range-ol-metion actuators such as DC motors [5] introduced point density Lo describe the workspace.
or hydraulic actuaters. Compare to a tradibonal robot Also an effective algorithm using density map has been
manipulator, a nary parallel robol manipulalor uses studied 1o compute 2 inverse kinematic solution of a
actuators which have only two stable states and 1ts binary robot mampulator[&][7].
structure can be built by stacking variable geomctry fruss
on top of each other m a long serial chain. They present ¥,
an important alternative to conventional six DOF re“d effecior

manipulators, because the additional degrees ol freedom

- i

facilitale obslacle avoidance and allow tasks lo be
performed even if some of the aclualors fal. Hyper
redundant robots have a very large degree of kinematic
redundancy, and are analogous in morphology and

operalion 1o snakes, elephant trunks, and tentacles. R aYo als

Because the number of possillc configurations ol a binary NV i

robol manipulater grows exponentially with the number RN !

ol actuators it 15 very dilficult o sclve an inverse _j_(; \\Vgﬁi

kincmatic problemn The kinematics and control of hyper ‘?4\""—:7 el v/\\|m0d'-”e z

redundant manipulators with continuous actuators have 7m‘m\jodule i

been studied by some researchers[1]{2]. An mverse . /“'t’ \{’-\\"’*
SR S

kinematies of a binary manipulator was indirectty solved
by using backbone curve[3][4]. A backbone curves 15

, o . Fig. | Planar binary rcbot mampulalor
a continuous curve describing the shape of binary
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In this paper, we solve an inverse kinemalic problem
by minimizing the end effeclor position error for given
larget position. A genelic algorithm is used as a
minimization procedure. This algorithm is execuled (o
obtain an inverse kinematic solution with a small error

bound and density map of a workspace.

2. Kinematic Modeling

Fig. | represents a binary 10bol manipulator with s

modules. Cach actualor ¢, has only two siates, (g,
and ., so that the binary robot manipulator can reach

2% finite positions. The large number of possible
posilions of a binary robol manipulater prevenis us from
computing s inverse kinematic problem.

The basic truss madule is composed of three linear
binary actuaiors and (wo plates(upper and iower plale)
as shown m Fig 2. For a kincmatic analysis, we assign
coordinate sysicms lo each basic module. The origin of
a moving coodinale system{ 7} is located al the pomnt
D) on upper plate and x-axis and y-axis are directed
along and vertically to the upper plate respectively. The

£ coordinaie system is located on the base plate in

the same way with its origin at A. The relerence

coordinate sysiem { #} 1s attached on the base plate and
its orgin 15 located at the cenier of basc plate.
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Fig. 2 Kinematic modcling of binary robot mantpulaior

for ¢ -lh module

77

3. Kinematic Analysis

3.1 Forward kinematics

Two coordinate systems are attached on the upper
and lower plate in a basic module mentioned belore.
The relalionship between these two coordinate systems
can be described by the following so called transformation
matrix.

cos{d) —sin(d) x,
T = | sin(#) cos{e) 3
0 0 1

where, ¢ is the rotation sngle between two coordinale
systems and x5, ¥y e the posilien vectors of origin
of 7} coordinale syslem with respect o §7—11}

coordinate syslem. xy, 3 and ¢ are given as[4]

Xy = Dx: Yo = D_w

-, C,—D
— L X r
p = tan °( C.— D, )
where
B — g+ al- o
C.x = 4{).5_—— . C)‘ - a1 — C-{
S }fg H v 2]1
2 2
@51t i — b Cs
by = : L k= o
1 7 CJ‘ 2 C_V
2 JZE }EE a
11:1%%4“1’[2: kglaﬁ:?%*ﬁr—z

D, should be chosen 1o satisfy _,—él_é % AD > 0.

The cocrdinaie of the end effector can be described
using the [ollowing equation.

oo i 1 i—1 m—1
Tm - TO ’I‘? TQ ﬁ -- Ti . -Tm
3.2 Inverse kinematics
The workspace in terms of conventional way is an
area where rohot mampulator can reach. The workspace
of a binary mampulator 15 not given as a conunuous

area bui a sel of 2% points. This discrete characteristic



Gilliar Ryu and [hnseok Rhee | International Journal of the KSPE. Vol 2, No 1

makes it impossible to find an exact inversc kinematic
solution in terms of conventional way for almost all target
positions in plane. Therefore, new definitions of
workspace and inverse kmematic solulion need to be
introduced for a binary manipulatot.

We define a workspace of a binary mampulator,

Wis) < I8 , as a set of points where end effector can

reach withm cerain bound &, that is,
W& =1xlllx— z.(g)ll <3 for some g's}

where || - || denoctes Fuclidian norm, =z, end

effector posion and g = {gy, g, ", g2,k 15 joint

variable vector. For a target point  x & W($). we can
find a g such that

IPEACIES: (1)

It is clear that g satisfving equation (1) 15 nat unique
lor a given target point, Therelore, an inverse kinematic
solution for a binary manipulator should be described

by a set of g's satisfying equation (1}, The inverse
kinematic solution for a largel point x is characterized

by triplet { g. o, O} where g is a jeint vector such
that

lx— x (@)l < llx— x(a)l )

for all g's satisfving equation (17 and o denotes density
defined as

o= 12/23111

where # is the number of joint vector satisfyving
equation (1). Obviously, _g is the joint vecior producing
minimum emror and @ represents how smoothly the
binary manipulator is able to move in the neighbourhood
of a target point as well as the probability that an end
elleclor due 1o arbitrary joint vector lands within a ball
piven by cquation {1).

To obtain an wverse kinematic solution triplet for

i)

a largel point ;:, we first find a jomt vector g°
minimizing cost funclion J given as

- 9
Ho=1lx— a2 (@)]" 3

Then x <= W S) and g= g" ifand only il g*
satisfies equation (1). However, it is difficull 1o apply
optimization schemes such as nonlinzar programming or
gradient method to minimization ol equation (3} since

¢; has only 2 stales, /o, and /{...

4. Genetic algorithm

Genetic algorithm is an oplimization technique based
on the mechamcs of natural genetics. In genetic
algorithm, the parameter set of the optimization problem
Due

to the binary nature, genetic algorithm 15 easily applied

is usually coded as a finite length binary string.

to solve the inverse kinematic problem of a binary
manipulator

Let
variables of binary manipulator, that s,

v be a binary stning representation of joint

v= <b3m b:}.mfl e b; bl> (4}

where

h = 0 for q, = [mm
o for g, = o

Al cach iteration ¢ of a genetic algorithm, the

population (7 15 composed of potential solutions

PO = {of, vh. ..., 00 ) ©

where s, 15 the population size which remains
constant over enturc tteration and indvidual 2, is coded
as equation {4). We adopt simple genetic algorithm
described irref. [8] as a basic algorithm. In simple genctic
algarithm, a population of bmnary coded polenual
solutions is constructed and undergoes three genctic
operators. selection, crossover and mulalion at each
Heration, so called generation. Tigure 3 shaws Lhe
procedures.
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procedure penetic algerithm begin 7= ()
nitiahze F{#)
evaluate ()
while {nol termination-condition) do
begin
Fe—1+1
select P({) from A(¢F—1)
recombine (5
cvaluate  P({)
end

end
Fig. 3 A simple geneuc algorithm

Seleciion 1s a reproduclion process of population
bascd on the [itness of individual. We use the follawing

formula to calculaie the filness of an mdividual ». the

binary represcotation of jomnt variable g,

f(’i,':) = Joax “i( q)

where [ denoles fitness and J_,. (he maxumum

cost in the last v generations which 1s called the scahng
window. Individuals of new population are selected by
spinning a roulelte wheel with slols sized according Lo
fitness ol currenl population,

The sciceted population 15 recombined with two
genetic operator, crossover and mulaijon.  We mate
selected individuals randoimnly, For each pair, crossover

takes place wilh crossover probability .. Crossover

E'c+l Ttt7c E'1> -

aperation replaces a pair ¢ _bg,,“-'-
< -E—?,'ﬁm'” ﬁr:*kl l)c i"Jl>
with a pawrr ol offspring ¢ _IJM‘" EL"‘l b by

{ Ejm'" —E—?rﬂ‘-l br:'" b1>

whore ¢ (8 the crossover point wlieh is also chosen
rendomly,  Mulalien is random aliernation of a sering
position, In binary code, it means that changing a | 1o
a 9 and vice versa. Every bil of indivispal have a chance
1o be mutated with probability p,,.

In addition to basic three operalors. we usc the eliiist
strategy in which the current best individual swvives

intact Lo next gencration.
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As generation elapses, the best individual of each

generation converges 1o the binary representation of g*.
individuals
The

accumulaled number converges to ». If # is not zero,

We accumulate the number of distinct

salislying equation (|} at each generation.
ihe given target point is in W( &) . Practically, i1 15 almost
impossible o obtain 5 exactly since 1loe many
generations are required. However in the case that several
larget positions is invoelved, » [lor each target position

mves us a knowledge abowl relative density,

5. Numerical Examples

In this section, cxamples are presented 1o show bow
useiul genetic algorithms are 1o solve an inverse kinematic
anelysis for a binary robot manipulator. As an example,

we cousider a binary robot with s = 10. /.. = 7.
[mm =0 and b=35.

w. p, and p,, are chosen as 30, 5, 0.6 and 0.0333

For genetic algarithms, g,

respectively, Figure 4 shows a relative density map far
&= 2.5, Targer positons aic located al the centers of
square and ecually spaced by 5 horizontally and
verlically We cvolved 5000 generalions for sach target

position o obtam the mimmum error solution g . In
fgure 4 Dark zone means high Jdensity and thin zone
m=zans low cne The higher density a targei poinl has,
%e more accurate mingnum error solution  in terms of
probability, we can {find.

Tabtle | shows the minmmum error solulions for some
target pomts, 97 al thud column is the 1otal number of
distinct individuals salisfying equalion (1) [ whale 5000

gencralions. Oclal rumbcr lormat 15 used to desciibe the

binary siting cepresemation of g*. Figure 5 shews the
configurations of binary manipulator for each cases. The

'

mark ".s' represents wacgel pont, In case (a) o1 which
the target point is oul of work space, minimum crror
solution results large erior. For the targets point of case
(¢) and {@) which have 1elatively kigh density, minimum
error solutions derive the end effector lo targer pomt

very accuiately,
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Fig. 4 A density mmap of a warkspace

Table 1. Resulls of an inverse kinematic analysis

largel count | .
case . crror H 2
point " jomnt state( g )
a (2.5,7.5) 0 5.339 3331111114,
b (-7.5,-7.5) 76| 0.347 4444444667,
¢ | {22.5,42.5) | 2293 | D.O78 1402232335,
d | (-7.5, 37.5)| 748 | 0.036 4230113144,
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Fig. 5 Configurations of a binary manipulator
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6. Conclusion

A genctic algorithm has besn propoesed as a method

of solving an inverse kinematic analysis of binary

manipulalors. Numetical examples show that the genetic

algorithm is very cfficient for the tnverse kinematic

problem of binary manipulators. The genetic algorithm

used in this paper gives a joint veclor producing very

small errars for a given a larget point in workspace as

well as relative density of workspace.
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