• Title/Summary/Keyword: parallel PWM converter

Search Result 110, Processing Time 0.025 seconds

DSP-Based Digital Controller for Multi-Phase Synchronous Buck Converters

  • Kim, Jung-Hoon;Lim, Jeong-Gyu;Chung, Se-Kyo;Song, Yu-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • This paper represents a design and implementation of a digital controller for a multi-phase synchronous buck converter (SBC) using a digital signal processor (DSP). The multi-phase SBC has generally been used for a voltage regulation module (VRM) of a microprocessor because of its high current handling capability at a low output voltage. The VRM requires high control performance of tight output regulation, high slew rate, and load sharing capability of multiple converters. In order to achieve these requirements, the design and implementation of a digital control system for a multi-phase SBC are presented in this paper. The digital PWM generation, current sensing, and voltage and current controller using a DSP TMS320F2812 are considered. The experimental results are provided to show the validity of the implemented digital control system.

Study on Improving the Performances of Transformer and Convertor Switching Used for the High-Speed EMU (동력분산형 고속철도의 변압기 및 컨버터 스위칭 성능 개선 연구)

  • Park, Byoung-Gun;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1182-1187
    • /
    • 2008
  • In this research, studied were performance improvements of the power conversion system for the high speed EMU. The object of this research is separated into two parts ; the one is the analysis of the designed transformer and the other is the switching improvement of a parallel PWM converter. The multi-outputs of a transformer must be balanced. However, the output of transformer is interfered and unbalanced in practical operation. To solve these problems, the electromagnetic analyzing model of a transformer is used to minimize the output interference. Also, the improvement of converter switching can reduce the unbalanced output and harmonics.

  • PDF

A NOVEL SOFT-SWITCHING BOOST-TYPE PWM CONVERTER TOPOLOGY (새로운 영전류영전압 스위칭 승압 DC-DC 컨버터의 성능 해석)

  • Han, Byung-Moon;Baek, Seung-Taek;Kim, Jae-Hong;Kim, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.153-155
    • /
    • 1998
  • A novel soft-switching pulse-width modulated boost-type DC-DC converter topology is presented in this paper. The conventional boost switch is replaced by a switching cell that is comprised of two switch-diode pairs being linked by an inductor for zero-current switching turn-on. The diodes commutate the current that is flowing through the soft-switching inductor when the two switch turn-off. The capacitor is placed in parallel with the two switches during turn-off, thus providing zero-voltage switching turn-off. Simulation results are presented to support the theoretical considerations.

  • PDF

A Study on Harmonic Resonance in a DFIG Wind Turbine-generator Connected to a Distribution Power Line (DFIG 풍력발전기가 연계된 배전선로의 고조파 공진 특성에 관한 연구)

  • Choi, Hyung-Joo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1383-1389
    • /
    • 2013
  • There were telecommunication noise and malfunctions of the electronic devices occurred over a wide area due to the high harmonic voltage and/or current levels of the Back-to-back converter in the DFIG wind power system even though the magnitude of all harmonics is within the international standards. The triangular carrier signals of the PWM used in the power converter system is related to the telecommunication noise because they are in the range of audible frequencies and amplified by a variety of the standing waves that were excited by harmonic voltage sources in the weak grid system such as a long distance distribution transmission lines. This paper describes the characteristics of the harmonics in the wind turbine-generator, numerical analysis and simulation of the harmonics resonance phenomena in the distribution lines as well as measuring induced voltage of the telecommunication lines in parallel with power lines in order to verify the root cause of the telecommunication noise. These noise problems can occur in a wind turbine power system with a non-linear converter at any time, as well as photovoltaic power system. So, the preliminary review of suitable filter devices and switching frequencies of the PWM have to be required by considering the stability of the controller at the design stage but as part of the measures the effect of the telecommunication cable shields was analyzed by comparing the measured data between multi-conductor with/without shields so as to attenuate the sources of the harmonics voltage induced into the telecommunication lines and to apply the most cost-effective measures in the field.

Characteristics comparison of food parallel type high frequency resonant inverter by driving signal control method (구동신호 제어기법에 의한 부하병렬형 고주파 인버터의 특성비교)

  • 이봉섭;원재선;김동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.94-102
    • /
    • 2003
  • This paper describes the load parallel type full-bridge high frequency resonant inverter can be used as power source. Output control method of proposed circuit is compared with pulse frequency modulation(PFM), pulse width modulation(PWM) and pulse phase variation(Phase-Shift). The analysis of the proposed circuit is generally described by using the normalized parameters. The principle of basic operating and the its characteristics are estimated according to the parameters such as switching frequency(${\mu}$), pulse width($\theta$d) the variation of phase angle($\phi$) by three driving signal patterns. Experimental results are presented to verify the theoretical analysis result. In future, Characteristics by three driving signal control method is provided as useful data in case of output control of a power supply in various fields as induction heating application, DC-DC converter etc.

Implementation of the Digital Current Control System for an Induction Motor Using FPGA (FPGA를 이용한 유도 전동기의 디지털 전류 제어 시스템 구현)

  • Yang, Oh
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.21-30
    • /
    • 1998
  • In this paper, a digital current control system using a FPGA(Field Programmable Gate Array) was implemented, and the system was applied to an induction motor widely used as an industrial driving machine. The FPGA designed by VHDL(VHSIC Hardware Description Language) consists of a PWM(Pulse Width Modulation) generation block, a PWM protection block, a speed measuring block, a watch dog timer block, an interrupt control block, a decoder logic block, a wait control block and digital input and output blocks respectively. Dedicated clock inputs on the FPGA were used for high-speed execution, and an up-down counter and a latch block were designed in parallel, in order that the triangle wave could be operated at 40 MHz clock. When triangle wave is compared with many registers respectively, gate delay occurs from excessive fan-outs. To reduce the delay, two triangle wave registers were implemented in parallel. Amplitude and frequency of the triangle wave, and dead time of PWM could be changed by software. This FPGA was synthesized by pASIC 2SpDE and Synplify-Lite synthesis tool of Quick Logic company. The final simulation for worst cases was successfully performed under a Verilog HDL simulation environment. And the FPGA programmed for an 84 pin PLCC package was applied to digital current control system for 3-phase induction motor. The digital current control system of the 3 phase induction motor was configured using the DSP(TMS320C31-40 MHz), FPGA, A/D converter and Hall CT etc., and experimental results showed the effectiveness of the digital current control system.

  • PDF

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

A new power-stage design and analysis to modularize power regulator of the KOrea Multi-Purpose SATellite (다목적 실용위성 전력조절기 모듈화 구현을 위한 새로운 전원단 설계 및 해석)

  • 박성우;이재승;이종인;윤정오
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.2
    • /
    • pp.84-91
    • /
    • 2003
  • KOMPSAT series use software-controlled unregulated bus system in which the main bus is directly connected to a battery and the duty-ratio for PWM switch is controlled by the on-board satellite software. This paper proposes a new power-stage circuit that can be available for modularization of the power regulator which is used at the software-controlled unregulated bus system satellite. And we analyze the proposed power-stage operation according to its operating modes and verify it by performing software simulation and hardware experiment using prototype. We construct a parallel-module converter which is composed of proposed power-stages and perform experiment to verify modular characteristics of the proposed power-stage. Finally, we verify the usefulness of the proposed power-stage by comparing above results with those of a parallel-module converter made of conventional power-stages.

  • PDF

A Study on Control and Compensating Characteristics of Active Series Voltage Compensator with Harmonic Current Compensating Capability (고조파전류 보상 기능을 갖는 능동 직렬 전압보상기의 제어 및 보상특성에 관한 연구)

  • 이승요;김홍성;최규하;신우석;김홍근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.484-492
    • /
    • 2000
  • In this paper, a voltage compensator with harmonic current compensating capability is studied and its compensating characteristics are analyzed. Like the hybrid active power filter, the proposed system is composed of parallel LC passive filter and series PWM converter connected to power line through series transformer. It is shown that the compensation of harmonic current generated due to nonlinear loads such as diode rectifier and instantaneous voltage compensation of the source are performed through the proposed compensating system. The operating principle of the proposed system is described through a single-phase equivalent circuit and the control strategy is suggested on the d-q rotating reference frame of the 3-phase system. Also, experiment is carried out to verify compensating characteristics of the proposed system.

  • PDF

An Improved Feed-Forward Controller for the Parallel Operation of a Single-Phase PWM Converter in High-Speed Trains (고속철도용 단상 PWM 컨버터의 병렬운전을 위한 개선된 전향제어기)

  • Park, Byoung-Gun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.226-234
    • /
    • 2010
  • This paper proposes an improved feed-forward controller that calculates the gain value by estimating the changed boost inductance in practical operating condition of transformer. The boost inductance is estimated by the measurement of input current and voltage. The estimated boost inductance is optimized by the least square method. The proposed feed-forward controller can be achieved the robust control through the gain value calculating the estimated boost inductance despite of the changed condition of transformer and can minimize the interference phenomenon by reducing the harmonics of input current. The validity of proposed technique is verified through the simulation and experiment.