• Title/Summary/Keyword: parabolic shear beam theory

Search Result 32, Processing Time 0.021 seconds

Free Vibrations of Timoshenko Beam with Constant Volume (일정체적 Timoshenko 보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • This paper deals with free vibrations of the tapered Timoshenko beam with constant volume, in which both the rotatory inertia and shear deformation are included. The cross section of the tapered beam is chosen as the regular polygon cross section whose depth is varied with the parabolic function. The ordinary differential equations governing free vibrations of such beam are derived based on the Timoshenko beam theory by decomposing the displacements. Governing equations are solved for determining the natural frequencies corresponding with their mode shapes. In the numerical examples, three end constraints of the hinged-hinged, hinged-clamped and clamped-clamped ends are considered. The effects of various beam parameters on natural frequencies are extensively discussed. The mode shapes of both the deflections and stress resultants are presented, in which the composing rates due to bending rotation and shear deformation are determined.

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine;Drai, Ahmed;Houari, Mohamed Sid Ahmed;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.643-656
    • /
    • 2020
  • This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Finite element bending and buckling analysis of functionally graded carbon nanotubes-reinforced composite beam under arbitrary boundary conditions

  • Belarbi, Mohamed-Ouejdi;Salami, Sattar Jedari;Garg, Aman;Hirane, Hicham;Amine, Daikh Ahmed;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.451-471
    • /
    • 2022
  • In the present paper, the static bending and buckling responses of functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) beam under various boundary conditions are investigated within the framework of higher shear deformation theory. The significant feature of the proposed theory is that it provides an accurate parabolic distribution of transverse shear stress through the thickness satisfying the traction-free boundary conditions needless of any shear correction factor. Uniform (UD) and four graded distributions of CNTs which are FG-O, FG-X, FG- and FG-V are selected here for the analysis. The effective material properties of FG-CNTRC beams are estimated according to the rule of mixture. To model the FG-CNTRC beam realistically, an efficient Hermite-Lagrangian finite element formulation is successfully developed. The accuracy and efficiency of the present model are demonstrated by comparison with published benchmark results. Moreover, comprehensive numerical results are presented and discussed in detail to investigate the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, and length-to-thickness ratio on the bending and buckling responses of FG-CNTRC beam. Several new referential results are also reported for the first time which will serve as a benchmark for future studies in a similar direction. It is concluded that the FG-X-CNTRC beam is the strongest beam that carries the lowest central deflection and is followed by the UD, V, Λ, and FG-O-CNTRC beam. Besides, the critical buckling load belonging to the FG-X-CNTRC beam is the highest, followed by UD and FG-O.

An analytical solution for bending and vibration responses of functionally graded beams with porosities

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.329-342
    • /
    • 2017
  • This work presents a static and free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. A new displacement field containing integrals is proposed which involves only three variables. Based on the suggested theory, the equations of motion are derived from Hamilton's principle. This theory involves only three unknown functions and accounts for parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the beam. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses and natural frequencies on the bending and free vibration responses of functionally graded beams.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Free Vibrations of Tapered Timoshenko Beam by using 4th Order Ordinary Differential Equation (4계 상미분방정식에 의한 변단면 Timoshenko 보의 자유진동)

  • Lee, Byoung-Koo;Park, Kwang-Kyou;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • This paper deals with free vibrations of the tapered Timoshenko beam in which both the rotatory inertia and shear deformation are included. The cross section of the tapered beam is chosen as the rectangular cross section whose depth is constant but breadth is varied with the parabolic function. The fourth order ordinary differential equation with respect the vertical deflection governing free vibrations of such beam is derived based on the Timoshenko beam theory. This governing equation is solved for determining the natural frequencies corresponding with their mode shapes. In the numerical examples, three end constraints of the hinged-hinged, hinged-clamped and clamped-clamped ends are considered. The effects of various beam parameters on natural frequencies are extensively discussed. The mode shapes of both the deflections and stress resultants are presented, in which the composing rates due to bending rotation and shear deformation are determined.

An accurate analytical model for the buckling analysis of FG-CNT reinforced composite beams resting on an elastic foundation with arbitrary boundary conditions

  • Aicha Remil;Mohamed-Ouejdi Belarbi;Aicha Bessaim;Mohammed Sid Ahmed Houari;Ahmed Bouamoud;Ahmed Amine Daikh;Abderrahmane Mouffoki;Abdelouahed Tounsi;Amin Hamdi;Mohamed A. Eltaher
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2023
  • The main purpose of the current research is to develop an efficient two variables trigonometric shear deformation beam theory to investigate the buckling behavior of symmetric and non-symmetric functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beam resting on an elastic foundation with various boundary conditions. The proposed theory obviates the use to shear correction factors as it satisfies the parabolic variation of through-thickness shear stress distribution. The composite beam is made of a polymeric matrix reinforced by aligned and distributed single-walled carbon nanotubes (SWCNTs) with different patterns of reinforcement. The material properties of the FG-CNTRC beam are estimated by using the rule of mixture. The governing equilibrium equations are solved by using new analytical solutions based on the Galerkin method. The robustness and accuracy of the proposed analytical model are demonstrated by comparing its results with those available by other researchers in the existing literature. Moreover, a comprehensive parametric study is presented and discussed in detail to show the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, length-to-thickness ratio, and spring constant factors on the buckling response of FG-CNTRC beam. Some new referential results are reported for the first time, which will serve as a benchmark for future research.

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.