Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.6.787

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory  

Hendi, Asmaa A. (Department of Physics, Faculty of Science, AL Faisaliah Campus, King Abdulaziz University)
Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University (KAU))
Mohamed, Salwa A. (Engineering Mathematics Department, Faculty of Engineering, Zagazig University)
Attia, Mohamed A. (Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University)
Abdalla, A.W. (Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University)
Publication Information
Steel and Composite Structures / v.41, no.6, 2021 , pp. 787-803 More about this Journal
Abstract
The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.
Keywords
2D-FG tapered microbeams; nonlinear temperature profile; nonlinear thermal vibration; stability analysis;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Chandel, V.S., Wang, G. and Talha, M. (2020), "Advances in modelling and analysis of nano structures: a review", Nanotechnol. Rev., 9(1), 230-258. https://doi.org/10.1515/ntrev-2020-0020.   DOI
2 Chen, X., Lu, Y. and Li, Y. (2019a), "Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium", Appl. Mathem. Modelling. 67, 430-448. https://doi.org/10.1016/j.apm.2018.11.004   DOI
3 Dehrouyeh-Semnani, A.M. (2017), "On boundary conditions for thermally loaded FG beams", Int. J. Eng. Sci., 119, 109-127. https://doi.org/10.1016/j.ijengsci.2017.06.017.   DOI
4 Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.   DOI
5 Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mechanica. 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6.   DOI
6 Asiri, S.A., Akbas, S.D and Eltaher, M.A. (2020), "Dynamic analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., https://doi.org/10.1142/S1758825120500556   DOI
7 Chen, X., Zhang, X., Lu, Y. and Li, Y. (2019b), "Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams", International Journal of Mechanical Sciences. 151, 424-443. https://doi.org/10.1016/j.ijmecsci.2018.12.001   DOI
8 Rajasekaran, S. and Khaniki, H.B. (2019), "Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass", Appl. Mathem. Modelling, 72, 129-154. https://doi.org/10.1016/j.apm.2019.03.021.   DOI
9 Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A. and Kazemi, M. (2017b), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct. 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415   DOI
10 Nguyen, D.K., Nguyen, Q.H. and Tran, T.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mechanica. 228(1), 141-155. https://doi.org/10.1007/s00707-016-1705-3.   DOI
11 Romano, G., Barretta, R. and Diaco, M. (2019), "Iterative methods for nonlocal elasticity problems", Continuum Mech. Thermodyn., 31(3), 669-689. https://doi.org/10.1007/s00161-018-0717-8.   DOI
12 Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020b), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., https://doi.org/10.1007/s00366-020-01070-3.   DOI
13 Attia, M.A., Shanab, R.A., Mohamed, S.A. and Mohamed, N.A. (2019), "Surface energy effects on the nonlinear free vibration of functionally graded timoshenko nanobeams based on modified couple Stress theory", Int. J. Struct. Stab. Dyn., 19(11), 1950127. https://doi.org/10.1142/S021945541950127X.   DOI
14 Anandrao, K.S., Gupta, R., Ramchandran, P. and Rao, G.V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545.   DOI
15 Shanab, R.A., Mohamed, S.A., Mohamed, N.A. and Attia, M.A. (2020), "Comprehensive investigation of vibration of sigmoid and power law FG nanobeams based on surface elasticity and modified couple stress theories", Acta Mechanica, 1-34. https://doi.org/10.1007/s00707-020-02623-9.   DOI
16 Karamanli, A. and Vo, T.P. (2018), "Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method", Compos. Part B: Eng., 144, 171-183. https://doi.org/10.1016/j.compositesb.2018.02.030.   DOI
17 Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.   DOI
18 Liu, Y., Su, S., Huang, H. and Liang, Y. (2019), "Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane", Compos. Part B: Eng., 168, 236-242. https://doi.org/10.1016/j.compositesb.2018.12.063.   DOI
19 Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.   DOI
20 Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020a), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 1077546320947302. https://doi.org/10.1177/1077546320947302.   DOI
21 Akgoz, B. and Civalek, O . (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.   DOI
22 Attia, M.A. and Mahmoud, F.F. (2017), "Analysis of viscoelastic Bernoulli-Euler nanobeams incorporating nonlocal and microstructure effects.", Int. J. Mech. Mater. Des., 13(3), 385-406. https://doi.org/10.1007/s10999-016-9343-4.   DOI
23 Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.   DOI
24 Dehrouyeh-Semnani, A.M. and Nikkhah-Bahrami, M. (2015), "A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory", Int. J. Eng. Sci., 86, 20-25. https://doi.org/10.1016/j.ijengsci.2014.10.003.   DOI
25 Dehrouyeh-Semnani, A.M., Mostafaei, H., Dehrouyeh, M. and Nikkhah-Bahrami, M. (2017), "Thermal pre-and post-snap-through buckling of a geometrically imperfect doubly-clamped microbeam made of temperature-dependent functionally graded materials", Compos. Struct., 170, 122-134. https://doi.org/10.1016/j.compstruct.2017.03.003.   DOI
26 Ebrahimi, F. and Farazmandnia, N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., 27(2), 149-159. https://doi.org/10.12989/scs.2018.27.2.149.   DOI
27 Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023.   DOI
28 Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.   DOI
29 Huang, Y. and Ouyang, Z.Y. (2020), "Exact solution for bending analysis of two-directional functionally graded Timoshenko beams" Archive Appl. Mech., 1-19. https://doi.org/10.1007/s00419-019-01655-5.   DOI
30 Attia, M.A. and Mahmoud, F.F. (2016), "Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories", Int. J. Mech. Sci., 105,126-134. https://doi.org/10.1016/j.ijmecsci.2015.11.002.   DOI
31 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.   DOI
32 Reddy, J.N. (1984), A Simple Higher-Order Theory for Laminated Composite Plates.
33 Sahmani, S. and Safaei, B. (2020), "Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams", Appl. Mathem. Modelling, 82, 336-358. https://doi.org/10.1016/j.apm.2020.01.051.   DOI
34 Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/microscale beams", Aerospace Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.   DOI
35 Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A. (2017a), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.   DOI
36 Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017b), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.   DOI
37 Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stress. 21(6), 593-626. https://doi.org/10.1080/01495739808956165.   DOI
38 Su, Z., Jin, G., Wang, L. and Wang, D. (2018), "Thermomechanical vibration analysis of size-dependent functionally graded micro-beams with general boundary conditions", Int. J. Appl. Mech., 10(08), 1850088. https://doi.org/10.1142/S1758825118500886.   DOI
39 Sharma, P., Singh, R. and Hussain, M. (2020), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.   DOI
40 Simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314. https://doi.org/10.1016/j.compstruct.2016.04.034.   DOI
41 Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225, 111076. https://doi.org/10.1016/j.compstruct.2019.111076.   DOI
42 Thai, H.T., Vo, T.P., Nguyen, T.K. and Kim, S.E. (2017), "A review of continuum mechanics models for size-dependent analysis of beams and plates", Compos. Struct., 177, 196-219. https://doi.org/10.1016/j.compstruct.2017.06.040.   DOI
43 Udupa, G., Rao, S.S. and Gangadharan, K. (2014), "Functionally graded composite materials: an overview", Procedia Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.   DOI
44 Wagih, A., Attia, M.A., AbdelRahman, A.A., Bendine, K. and Sebaey, T.A. (2019), "On the indentation of elastoplastic functionally graded materials", Mech. Mater., 129, 169-188. https://doi.org/10.1016/j.mechmat.2018.11.012.   DOI
45 Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.   DOI
46 Shanab, R., Attia, M. and Mohamed, S. (2017), "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Int. J. Mech. Sci., 131, 908-923. https://doi.org/10.1016/j.ijmecsci.2017.07.055.   DOI
47 Khaniki, H.B. and Rajasekaran, S. (2018), "Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory", Mater. Res. Express. 5(5), 055703. https://doi.org/10.1088/2053-1591/aabe62.   DOI
48 Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.   DOI
49 Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.   DOI
50 Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669-682. https://doi.org/10.12989/sem.2019.71.6.669.   DOI
51 Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solids Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017.   DOI
52 Komijani, M., Esfahani, S., Reddy, J., Liu, Y. and Eslami, M. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation", Compos. Struct., 112, 292-307. https://doi.org/10.1016/j.compstruct.2014.01.041.   DOI
53 Lei, J., He, Y., Guo, S., Li, Z. and Liu, D. (2017), "Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM", J. Thermal Stresses. 40(6), 665-689. https://doi.org/10.1080/01495739.2016.1258602.   DOI
54 Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.   DOI
55 Karami, B., Janghorban, M. and Rabczuk, T. (2020), "Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory", Compos. Part B: Eng., 182, 107622. https://doi.org/10.1016/j.compositesb.2019.107622.   DOI
56 Mahmoud, F.F. (2017), "On the nonexistence of a feasible solution in the context of the differential form of Eringen's constitutive model: a proposed iterative model based on a residual nonlocality formulation", Int. J. Appl. Mech., 9(07), 1750094. https://doi.org/10.1142/S1758825117500946.   DOI
57 Eltaher, M.A., Attia, M.A. and Wagih, A. (2020a), "Predictive model for indentation of elasto-plastic functionally graded composites", Compos. Part B: Eng., 108129. https://doi.org/10.1016/j.compositesb.2020.108129.   DOI
58 Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B: Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.   DOI
59 Eltaher, M.A. and Mohamed, S.A. (2020a), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.   DOI
60 Eltaher, M.A. and Mohamed, N. (2020b), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Mathem. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.   DOI
61 Galeban, M., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.   DOI
62 Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001   DOI
63 Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.   DOI
64 Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775.   DOI
65 Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.   DOI
66 Wang, Y., Ren, H., Fu, T. and Shi, C. (2020), "Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory", Acta Astronautica. 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036.   DOI
67 Wang, Z.H. and Wang, X.H. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013.   DOI
68 Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
69 Ebrahimi-Nejad, S., Shaghaghi, G.R., Miraskari, F. and Kheybari, M. (2019), "Size-dependent vibration in two-directional functionally graded porous nanobeams under hygro-thermomechanical loading", European Phys. J. Plus. 134(9), 465. https://doi.org/10.1140/epjp/i2019-12795-6.   DOI
70 Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481.   DOI
71 Zhao, L., Zhu, J. and Wen, X.D. (2016), "Exact analysis of bidirectional functionally graded beams with arbitrary boundary conditions via the symplectic approach", Struct. Eng. Mech., 59(1), 101-122. http://dx.doi.org/10.12989/sem.2016.59.1.101.   DOI
72 Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019a), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.   DOI
73 Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019b), "A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.   DOI
74 Zhang, Z., Zhou, D., Xu, X. and Li, X. (2020), "Analysis of thick beams with temperature-dependent material properties under thermomechanical loads", Advan. Struct. Eng., 1369433220901810. https://doi.org/10.1177/1369433220901810.   DOI
75 Yang, T., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.   DOI
76 Attia, M.A. and Mohamed, S.A. (2018), "Pull-in instability of functionally graded cantilever nanoactuators incorporating effects of microstructure, surface energy and intermolecular forces", Int. J. Appl. Mech., 10(08), 1850091. https://doi.org/10.1142/S1758825118500916.   DOI
77 Attia, M.A. and El-Shafei, A.G. (2020), "Investigation of multibody receding frictional indentation problems of unbonded elastic functionally graded layers", Int. J. Mech. Sci., 184, 105838. https://doi.org/10.1016/j.ijmecsci.2020.105838.   DOI
78 Attia, M.A. and Emam, S.A. (2018), "Electrostatic nonlinear bending, buckling and free vibrations of viscoelastic microbeams based on the modified couple stress theory", Acta Mechanica, 229(8), 3235-3255. https://doi.org/10.1007/s00707-018-2162-y.   DOI
79 Attia, M.A. and Mahmoud, F.F. (2015), "Analysis of nanoindentation of functionally graded layered bodies with surface elasticity", Int. J. Mech. Sci., 94, 36-48. https://doi.org/10.1016/j.ijmecsci.2015.02.016.   DOI
80 Attia, M.A. and Mohamed, S.A. (2019), "Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches", Acta Mechanica. 230(3), 1181-1216. https://doi.org/10.1007/s00707-018-2345-6.   DOI
81 She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.   DOI
82 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
83 Awrejcewicz, J., Krysko, V., Pavlov, S., Zhigalov, M., Kalutsky, L. and Krysko, A. (2020), "Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory", Nonlinear Dyn., 99(2), 919-943. https://doi.org/10.1007/s11071-019-04976-w.   DOI
84 Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.   DOI
85 Li, L., Li, X. and Hu, Y. (2018), "Nonlinear bending of a two-dimensionally functionally graded beam", Compos. Struct., 184, 1049-1061. https://doi.org/10.1016/j.compstruct.2017.10.087.   DOI
86 Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.   DOI
87 Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bidirectional functionally graded non-uniform timoshenko nanobeam using nonlocal elasticity theory", Compos. Part B: Eng., 172, 724-742. https://doi.org/10.1016/j.compositesb.2019.05.076.   DOI
88 Lal, R. and Dangi, C. (2020), "Effect of in-plane load and thermal environment on buckling and vibration behavior of two-dimensional functionally graded tapered Timoshenko nanobeam", J. Vib. Acous., 1-27. https://doi.org/10.1115/1.4047862.   DOI
89 Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.   DOI
90 Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017a), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.   DOI
91 Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120.   DOI
92 Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2020), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Des. Struct. Machines. 1-18. https://doi.org/10.1080/15397734.2020.1719507.   DOI
93 Nateghi, A. and Salamat-talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048.   DOI
94 Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.   DOI
95 Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Post-buckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 209, 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.   DOI
96 Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020b), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst, 26(2), 213226. http://dx.doi.org/10.12989/sss.2020.26.2.213.   DOI
97 Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.   DOI
98 Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.   DOI
99 Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467.   DOI
100 Challamel, N. and Wang, C. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology. 19(34), 345703. https://doi.org/10.1088/0957-4484/19/34/345703.   DOI