Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.1.095

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory  

Atmane, Redhwane Ait (Laboratoire Genie Industriel et Developpement Durable, Faculty of Technology, University of Relizane)
Mahmoudi, Noureddine (Department of Mechanical Engineering, University of Saida)
Bennai, Riadh (Department of civil engineering, Faculty of civil engineering and architecture, University of Hassiba Benbouali of Chlef)
Atmane, Hassen Ait (Department of civil engineering, Faculty of civil engineering and architecture, University of Hassiba Benbouali of Chlef)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Publication Information
Steel and Composite Structures / v.39, no.1, 2021 , pp. 95-107 More about this Journal
Abstract
In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.
Keywords
functionally graded beams; higher shear deformations theories; variable elastic foundations; porosity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chen, X., Lu, Y. and Li, Y (2019b), "Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium", Appl. Math. Model., 67, 430-448. https://doi.org/10.1016/j.apm.2018.11.004.   DOI
2 Chen, X., Zhang X., Lu, Y. and Li, Y. (2019c), "Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams", Int. J. Mech. Sci., 151, 424-443. https://doi.org/10.1016/j.ijmecsci.2018.12.001.   DOI
3 Chen, X., Lu, Y., Zhu, B., Zhang, X. and Li, Y. (2019a), "Nonlinear resonant behaviors of bi-directional functionally graded material microbeams: One-/two-parameter bifurcation analyses", Compos. Struct., 223, 110896. https://doi.org/10.1016/j.compstruct.2019.110896.   DOI
4 Bennai, R., Atmane, H.A., Ayache, B., Tounsi, A., Bedia, E.A.A., Al-Osta, M.A. (2019a), "Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory", Earthq. Struct., 16(5), 547-561. https://doi.org/10.12989/eas.2019.16.5.547.   DOI
5 Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.   DOI
6 Mollamahmutoglu, C. and Mercan, A. (2019), "A novel functional and mixed finite element analysis of functionally graded micro-beams based on modified couple stress theory", Compos. Struct., 223, 110950. https://doi.org/10.1016/j.compstruct.2019.110950.   DOI
7 Li, M., Zhao, X., Li, X., Chang, X.P. and Li, Y.H. (2018), "Stability analysis of oil-conveying pipes on two-parameter foundations with generalized boundary condition by means of Green's functions", Eng. Struct., 173, 300-312. https://doi.org/10.1016/j.engstruct.2018.07.001.   DOI
8 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
9 Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Therm. Stresses, 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788.   DOI
10 Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019a), "Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation", Arabian J. Geosci., 12(24).809. doi:10.1007/s12517-019-4871-5.   DOI
11 Nebab, M., Atmane, H. A., Bennai, R., Tounsi, A. and Bedia, E.A.A. (2019c), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.   DOI
12 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
13 Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020), "Vibration Analysis of Carbon Nanotube-Reinforced Composite Microbeams", Math. Method Appl. Sci., https://doi.org/10.1002/mma.7069.   DOI
14 Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 113216. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
15 Chikh, A. (2020), "Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations", Frattura ed Integrita Strutturale., 14(51), 115-126. https://doi.org/10.3221/IGF-ESIS.51.09.   DOI
16 Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. http://dx.doi.org/10.12989/sem.2020.76.6.765.   DOI
17 Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74(1), 83-90. https://doi.org/10.12989/SEM.2020.74.1.083.   DOI
18 Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019b), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.   DOI
19 Abdul Kareem, Z A. and Ibraheem Majeed, W. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.   DOI
20 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.   DOI
21 Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.   DOI
22 Akavci, S.S. (2015), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019.   DOI
23 Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343.   DOI
24 Dehsaraji, M.L., Saidi, A.R. and Mohammadi, M. (2020), "Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory", Struct. Eng. Mech., 73(3), 259-269. https://doi.org/10.12989/sem.2020.73.3.259.   DOI
25 Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A., Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.   DOI
26 Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032.   DOI
27 Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://doi.org/10.12989/gae.2020.22.5.415.   DOI
28 Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.   DOI
29 Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.   DOI
30 Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S., and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. http://dx.doi.org/10.12989/scs.2019.33.6.891.   DOI
31 Park, J.S. and Kim, J.H. (2006), "Thermal postbuckling and vibration analyses of functionally graded plates", J. Sound Vib., 289(1-2), 77-93. https://doi.org/10.1016/j.jsv.2005.01.031.   DOI
32 Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., 3(1), 1-23. https://doi.org/10.12989/cme.2021.3.1.001.   DOI
33 Pradhan, K.K., and Chakraverty, S. (2016), "Free vibration of FG Levy plate resting on elastic foundations", Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 169(1), 3-28. https://doi.org/10.1680/jencm.15.00014.   DOI
34 Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.   DOI
35 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)10970207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.   DOI
36 Gupta, A. and Talha, M. (2017), "Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory", Compos. Part B: Eng., 123, 241-261. https://doi.org/10.1016/j.compositesb.2017.05.010.   DOI
37 Reddy, J.N. and Cheng, Z.Q. (2001), "Three-dimensional thermomechanical deformations of functionally graded rectangular plates", Eur. J. Mech. A/Solid., 20, 841-855. https://doi.org/10.1016/S0997-7538(01)01174-3.   DOI
38 Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin-Wall. Struct., 150, 106683, https://doi.org/10.1016/j.tws.2020.106683.   DOI
39 Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, A.T., (2020), "Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., 36(6), 711-727. http://dx.doi.org/10.12989/scs.2020.36.6.711.   DOI
40 Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.   DOI
41 Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Ait Atmane, H. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.   DOI
42 Gupta, A., Talha, M. and Chaudhari, V.K. (2016), "Natural frequency of functionally graded plates resting on elastic foundation using finite element method", Procedia Technol., 23, 163-170. https://doi.org/10.1016/j.protcy.2016.03.013.   DOI
43 Akbas, S.D. (2017), "Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.   DOI
44 Al-shujairi, M. and Mollamahmutoglu, C. (2018), "Buckling and free vibration analysis of functionally graded sandwich microbeams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B: Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103.   DOI
45 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
46 Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98, https://doi.org/10.12989/amr.2020.9.1.063.   DOI
47 Hamed, M.A., Mohamed, S.A. and Eltaher, M.A, (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.   DOI
48 Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.   DOI
49 Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique., 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.   DOI
50 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
51 Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. http://dx.doi.org/10.12989/scs.2015.19.3.521.   DOI
52 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.   DOI
53 Sayyad, S.A. and Ghugal, Y.M. (2020), "Stress analysis of laminated composite and sandwich cylindrical shells using a generalized shell theory", Compos. Mater. Eng., 2(2), 103-124. https://doi.org/10.12989/cme.2020.2.2.103.   DOI
54 Shahsavari, D., Shahsavarib, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
55 She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027 27.   DOI
56 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Design., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.   DOI
57 Bennai, R., Fourn, H., Atmane, H.A., Tounsi, A., Bessaim, A. (2019b), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.   DOI
58 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.   DOI
59 Thanh, C.L., Nguyen, T.N., Vu, T. H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Engineering with Computers. doi:10.1007/s00366-020-01154-0.   DOI
60 Woo, J., Meguid, S.A. and Ong, L.S. (2006), "Nonlinear free vibration behavior of functionally graded plates", J. Sound Vib., 289, 595-611. https://doi.org/10.1016/j.jsv.2005.02.031.   DOI
61 Bensattalah, T., Bouakkaz, K., Zidour, M., Daouadji, T.H. (2019b), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.   DOI
62 Bensattalah, T., Zidour, M and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.   DOI
63 Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002   DOI
64 Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), "Buckling Temperature and Natural Frequencies of Thick Porous Functionally Graded Beams Resting on Elastic Foundation in a Thermal Environment", Adv. Acoust. Vib., 7986569. https://doi.org/10.1155/2019/7986569.   DOI
65 Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded visco elastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32, 2019. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
66 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.   DOI
67 Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.   DOI
68 Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
69 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
70 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
71 Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J. and Shao, Y.B. (2020), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 155, 477-491. https://doi.org/10.1016/j.jsv.2019.115001.   DOI
72 Zhang, L.W., Song, Z.G. and Liew, K.M. (2015), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLSRitz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011.   DOI
73 Zhao, X., Hu, Q.J., Crossley. W., Du, C.C. and Li, Y.H. (2017), "Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green's functions", Int. J. Mech. Sci., 128, 37-53. https://doi.org/10.1016/j.ijmecsci.2017.04.009.   DOI