• Title/Summary/Keyword: parC gene

Search Result 21, Processing Time 0.022 seconds

Analysis of Quinolone Resistance Determinants in Escherichia coli Isolated from Clinical Specimens and Livestock Feces (임상검체와 가축으로부터 분리된 대장균을 대상으로 Quinolone계 항균제 내성인자 분석)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.422-430
    • /
    • 2018
  • The inappropriate and widespread use of quinolones in humans and animals may cause accelerated emergence and spread of antimicrobial-resistant determinants. In this study, we investigated quinolone resistance mechanisms in a total of 65 nalidixic acid-resistant E. coli isolated from swine rectal swabs (N=40) and clinical specimens (N=25). Antimicrobial susceptibilities were determined by the disk diffusion method. PCR and DNA sequencing were performed for investigations of genes and mutations associated with quinolone resistance. In our study, 62 of 65 nalidixic acid-resistant E. coli harbored mutations in gyrA, parC, and/or parE genes; of the 65 isolates, 62 (95.4%) had mutations in the gyrA gene, 35 (53.8%) had mutations in the parC gene, 7 (10.8%) had mutations in the parE gene. The 35 isolates harbored mutations in two genes, gyrA and parC. Plasmid-mediated quinolone resistance (PMQR) determinants were investigated in the 65 isolates. Thirteen of 65 nalidixic acid-resistant E. coli contained the qnrS gene and 10 of those isolates had mutations in the gyrA, parC, and/or parE genes. We confirmed that an important mechanism of quinolone resistance in E. coli isolated from human and swine involves chromosomal mutations in the gyrA, parC, and/or parE genes with increasing use of quinolone for treatment or additives.

TopoisomeraseII and Topoisomerase IV Gene Mutations Fluoroquinolone Resistance of Pseudomonas aeruginosa

  • Kim Yuntae;Baik Heongseok
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.507-514
    • /
    • 2004
  • The Pseudomonas aeruginosa isolated from the clinical specimens has a mutation on the QRDR (quinolone resistance determining region). There were obvious mutations in both gyrA and parC gene which are major targets of quinolone. Simultaneous mutations were found two sites or more on these genes in all of ten strains. GyrB or parE gene had only silent mutation without converted amino acids. We confirmed that P. aeruginosa from clinical specimens exhibited decreased sensitivity to fluroquiolone due to changed Thr-83→lle and Asp-87→Asn types on gyrA and altered Ser-87→Leu type on parC. This is the first finding that a new Met-93→Thr type on parC as well as mutations on gyrB or parE genes differed from existing patterns. This study showed more mutations of gyrA rather than parC, suggesting that change of Type Ⅳ topoisomerase is more serious than that of type Ⅱ (DNA gyrase).

  • PDF

Fluoroquinolone Resistance and gyrA and parC Mutations of Escherichia coli Isolated from Chicken

  • Lee Young-Ju;Cho Jae-Keun;Kim Ki-Seuk;Tak Ryun-Bin;Kim Ae-Ran;Kim Jong-Wan;Im Suk-Kyoung;Kim Byoung-Han
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.391-397
    • /
    • 2005
  • Escherichia coli is a common inhabitant of the intestinal tracts of animals and humans. The intestines of animals also represent an ideal environment for the selection and transfer of antimicrobial resistance genes. The aim of this study was to investigate the resistance of E. coli isolated from chicken fecal samples to fluoroquinolones and to analyze the characterization of mutations in its gyrA and parC gene related resistance. One hundred and twenty-eight E. coil isolates showed a high resistance to ciprofloxacin (CIP; $60.2\%$), enrofloxacin (ENO; $73.4\%$) and norfloxacin (NOR; $60.2\%$). Missense mutation in gyrA was only found in the amino acid codons of Ser-83 or Asp-87. A high percentage of isolates ($60.2\%$) showed mutations at both amino acid codons. Missense mutation in parC was found in the amino acid codon of Ser-80 or Glu-84, and seven isolates showed mutations at both amino acid codons. Isolates with a single mutation in gyrA showed minimal inhibitory concentrations (MIC) for CIP (${\le}0.5\;to\;0.75{\mu}g/ml$), ENO (1 to $4{\mu}g/ml$) and NOR (0.75 to $4{\mu}g/ml$). These MIC were level compared to isolates with two mutations, one in gyrA and one in parC, and three mutations, one in gyrA and two in parC (CIP, ${\le}0.5\;to\;3{\mu}g/ml;\;ENO,\;2\;to\;32<{\mu}g/ml;\;NOR,\;1.5\;to\;6\;{\mu}g/ml$). However, the isolates with two mutation in gyrA regardless of whether there was a mutation in parC showed high MIC for the three fluoroquinolones (CIP, 0.75 to $32{\le}{\mu}g/ml;\;ENO,\;3\;to\;32{\le}{\mu}g/ml;\;NOR,\;3\;to\;32{\le}{\mu}g/ml$). Interestingly, although the E. coil used in this study was isolated from normal flora of chicken, not clinical specimens, a high percentage of isolates showed resistance to fluoroquinolones and possessed mutations at gyrA and parC associated with fluoroquinolone resistance.

Mutation in gyrA gene of nalidixic acid-resistant Salmonella isolates isolated from poultry slaughterhouse (닭 도축장에서 분리한 nalidixic acid 내성 Salmonella 균의 gyrA 유전자 돌연변이)

  • Cho, Jae-Keun;Son, Kyu-Hee;Kim, Kyung-Hee;Kim, Jeong-Mi;Park, Dae-Hyun;Lee, Jung-Woo
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.3
    • /
    • pp.153-159
    • /
    • 2019
  • The objective of this study was to identify mutations in the quinolone resistance determining region (QRDR) of the gyrA, gyrB, parC and parE genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes: qnrA, qnrB, qnrS, aac(6')-lb-cr and qepA in 40 nalidixic acid- resistant ($NA^R$) Salmonella isolates isolated from poultry slaughterhouse. The MIC of NA and ciprofloxacin for 40 $NA^R$ Salmonella isolates was $128{\sim}512{\mu}g/mL$ and < $0.125{\sim}0.25{\mu}g/mL$, respectively. The Salmonella isolates were resistant to NA (100%), gentamicin (5.0%) and ampicillin (2.5%). All $NA^R$ Salmonella isolates represented point mutation in codons Aspartic acid(Asp)-87 (90%) and Serine(Ser)-83 (10%) of QRDR of gyrA gene: $Asp87{\rightarrow}glycine$, $Ser83{\rightarrow}tyrosine$. No mutations were observed in QRDR of the gyrB, parC and parE gene. Moreover PMQR genes was not found in any of the tested isolates. Our findings showed that DNA gyrase is the primary target of quinolone resistance and a single mutation in codon Asp87 and Ser83 of the gyrA gene can confer resistance to NA and reduced susceptibility ciprofloxacin in Salmonella isolates.

Effect on Factors Related Lactation after Administration of Palmul-tang (팔물탕(八物湯) 복용이 산후 유즙분비 관련인자에 미치는 영향)

  • Song, Yun-Hui;Kim, Tae-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.1
    • /
    • pp.12-29
    • /
    • 2010
  • Purpose: This study was conducted to investigate the effect on factors related lactation after administration of Palmul-tang in postpartum C57BL/6N mice. Materials and Methods: Experimental groups were divided into control group post-par group and pre-par group. Pre-par and post-par group were administered Palmul-tang(p.o) twice a week for 4 weeks or 3 weeks respectively. Control group was administered normal saline for 3 weeks. Then we observed morphological change, immunohistochemical density and milk protein gene expression of factors related lactation within mammary gland of postpartum mice. Results: In post-par and pre-par groups, adipose tissue within mammary gland significantly decreased, and ductal branch and alveoli prominently developed than that of control group at 1~3 weeks after administraion of Palmul-tang. In post-par and pre-par groups, density of immunoreactivity on oxytocin, prolactin, estrogen and progesterone receptors in mammary glandular tissue significantly increased than that of control group. mRNA expression of $\beta$-casein and placental lactogen (PL)-1 in post-par group was more increased than that of control and pre-par groups. Conclusion: These results suggest that Palmul-tang significantly improved factors related lactation at postpartum period.

Molecular Characterization of Fluoroquinolone Resistant Escherichia coli Isolates from Chickens in Korea (닭에서 동정된 플르오르퀴놀론 내성 대장균 균주의 분자생물학적 성상에 관한 연구)

  • Sung, Ji-Youn;Oh, Ji-Eun
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.371-378
    • /
    • 2016
  • An aim of current study was to investigate the prevalence and the mechanism of quinolone-resistance in E. coli isolates obtained from chicken cecum in Korea. In addition, multilocus sequence typing (MLST) was also performed for the molecular characterization of E. coli isolates. In an antimicrobial susceptibility test by the disk diffusion method, the 63.5% (54/85) of E. coli isolates showed the resistance to quinolone group of antimicrobial agents. All of the 54 E. coli isolates showing resistant to quinolone group had sense mutations in gyrA gene and point mutations at the $57^{th}$, $80^{th}$, or $84^{th}$ residues in parC gene were detected in 90.7% of the isolates. Interestingly, E. coli ST was closely related to amino acid substitutions in parE gene. Our results indicated that the long-term use of antimicrobial agents in food-producing animals was strongly associated with a prevalence of antimicrobial resistance in commensal Enterobacteriaceae, suggesting the need for continuous surveillance and monitoring of antimicrobial resistant determinants in bacterial isolates from food animals.

Cloning, Expression, and Characterization of a Family B-Type DNA Polymerase from the Hyperthermophilic Crenarchaeon Pyrobaculum arsenaticum and Its Application to PCR

  • SHIN HEA-JIN;LEE SUNG-KYOUNG;CHOI JEONG JIN;KOH SUK-HOON;LEE JUNG-HYUN;KIM SANG-JIN;KWON SUK-TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1359-1367
    • /
    • 2005
  • The gene encoding Pyrobaculum arsenaticum DNA polymerase (Par DNA polymerase) was cloned and sequenced. The gene consists of 2,361 bp coding for a protein with 786 amino acid residues. The deduced amino acid sequence of Par DNA polymerase showed a high similarity to archaeal family B-type DNA polymerases (Group I), and contained all of the motifs conserved in the family B-type DNA polymerases for $3'{\rightarrow}5'$ exonuclease and polymerase activities. The Par DNA polymerase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RP. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $Hirap^{TM}$ Heparin HP column chromatographies. The optimum pH of the purified enzyme was 7.5. The enzyme activity was activated by divalent cations, and was inhibited by EDTA and monovalent cations. The half-life of the enzyme at $95^{\circ}C$ was 6 h. Par DNA polymerase possessed associated $3'{\rightarrow}5'$ proofreading exonuclease activity, which is consistent with its deduced amino acid sequence. PCR experiment with Par DNA polymerase showed an amplified product, indicating that this enzyme might be useful in DNA amplification and PCR-based applications.

Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolated from Retail Meat in Seoul (서울시내 시판 식육에서 분리한 대장균의 퀴놀론계 항생제 내성 기전 분석)

  • Park, Ji Min;Choi, Sung Sook
    • YAKHAK HOEJI
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The aim of this study was to investigate the prevalence of quinolone resistant E. coli from retail meat and to characterize the resistant determinants. Determination of minimum inhibitory concentration, the sequence analysis of gyrA, gyrB, parC, and parE quinolone resistance determining regions (QRDR), the presences of plasmid mediated quinolone resistance (PMQR) and the expression of efflux pump genes were investigated. Of the total 277 retail meat samples, 67 coli form bacteria were isolated. 15 of 67 isolates showed nalidixic acid resistance and 7 of 15 nalidixic acid resistant isolates were also resistant to ciprofloxacin, moxifloxacin and levofloxacin. 11 of 15 nalidixic acid resistant strains were isolated from chicken, 2 of 15 were isolated from beef and 2 of 15 were isolated from pork samples. 11 of 15 nalidixic acid resistant strains have single mutation at codon 87 (D87N or D87G) in gyrA, 2 of 11 gyrA mutants have double mutations at codon 86 and 87 (L86A and L87I) in parC with mutations at codon 434+445+465 or 429 in gyrB. 2 of 15 resistant isolates harbored qnrS, a PMQR determinant. Over expression of the acrB gene, efflux pump gene (3.93~16.53 fold), was observed in 10 of 15 resistant isolates.

Mutation Patterns of gyrA, gyrB, parC and parE Genes Related to Fluoroquinolone Resistance in Ureaplasma Species Isolated from Urogenital Specimens (비뇨생식기계 검체로부터 분리된 Ureaplasma 종의 Fluoroquinolone 내성과 관련된 gyrA, gyrB, parC, parE 유전자의 돌연변이 양상)

  • Cho, Eun-Jung;Hwang, Yu Yean;Koo, Bon-Kyeong;Park, Jesoep;Kim, Young Kwon;Kim, Sunghyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.74-81
    • /
    • 2016
  • Ureaplasma species can normally colonize in the bodies of healthy individuals. Their colonization is associated with various diseases including non-gonococcal urethritis, chorioamnionitis, neonatal meningitis, and prematurity. In 2012, the sum of the resistant and intermediate resistant rates of Ureaplasma spp. to ofloxacin and ciprofloxacin was 66.08% and 92.69%, respectively. DNA point mutations in the genes encoding DNA gyrase (topoisomerase II) and topoisomerase IV are commonly responsible for fluoroquinolone resistance. Each enzyme is composed of two subunits encoded by gyrA and gyrB genes for DNA gyrase and parC and parE genes for topoisomerase IV. In the current study, these genes were sequenced in order to determine the role of amino acid substitutions in Ureaplasma spp. clinical isolates. From December 2012 to May 2013, we examined mutation patterns of the quinolone resistance-determining region (QRDR) in Ureaplasma spp. DNA sequences in the QRDR region of Ureaplasma clinical isolates were compared with those of reference strains including U. urealyticum serovar 8 (ATCC 27618) and U. parvum serovar 3 (ATCC 27815). Mutations were detected in all ofloxacin- and ciprofloxacin-resistant isolates, however no mutations were detected in drug-susceptible isolates. Most of the mutations related to fluoroquinolone resistance occurred in the parC gene, causing amino acid substitutions. Newly found amino acid substitutions in this study were Asn481Ser in GyrB; Phe149Leu, Asp150Met, Asp151Ile, and Ser152Val in ParC; and Pro446Ser and Arg448Lys in ParE. Continuous monitoring and accumulation of mutation data in fluoroquinolone-resistant Ureaplasma clinical isolates are essential to determining the tendency and to understanding the mechanisms underlying antimicrobial resistance.

Increased Resistance to Quinolones in Streptococcus parauberis and Development of a Rapid Assay for Detecting Mutations in Topoisomerase Genes (Streptococcus parauberis의 퀴놀론 내성 증가와 Topoisomerase 유전자에서의 돌연변이 신속 분석)

  • Kim, So Yeon;Kim, Young Chul;Jeong, Seo Kyung;Jun, Lyu Jin;Jin, Ji Woong;Jeong, Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • To investigate the acquisition of quinolone resistance, we examined mutations in the quinolone resistance-determining region (QRDR) of type II topoisomerase genes in ciprofloxacin (CIP)-resistant clinical isolates and in vitro mutants of Streptococcus parauberis. The CIP-resistant clinical isolates had one base change responsible for a Ser-79${\rightarrow}$Thr in the QRDR of parC. However, the CIP-resistant in vitro mutants had an altered QRDR of parC (Ser-79${\rightarrow}$Ile) that differed from that of the isolates. None of the CIP-resistant S. parauberis clinical isolates or in vitro mutants exhibited amino acid changes in gyrA or gyrB. However, even though involvement in the increased resistance was not clear, an Arg-449${\rightarrow}$Ser mutation outside of the QRDR of parE was detected in CIP-resistant mutant 2P1. These results suggest that the topoisomerase IV gene, parC (and possibly parE, as well), is the primary ciprofloxacin target in S. parauberis. Additionally we established a high-resolution melting (HRM) assay capable of detecting the dominant mutation in four type II topoisomerase genes conferring ciprofloxacin resistance. These rapid and reliable assays may provide a convenient method of surveillance for genetic mutations conferring antibiotic resistance.