Browse > Article

Cloning, Expression, and Characterization of a Family B-Type DNA Polymerase from the Hyperthermophilic Crenarchaeon Pyrobaculum arsenaticum and Its Application to PCR  

SHIN HEA-JIN (Department of Genetic Engineering, Sungkyunkwan University)
LEE SUNG-KYOUNG (Department of Genetic Engineering, Sungkyunkwan University)
CHOI JEONG JIN (Department of Genetic Engineering, Sungkyunkwan University)
KOH SUK-HOON (Genome Research Center, Korea Research Institute of Bioscience and Biotechnology)
LEE JUNG-HYUN (Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute)
KIM SANG-JIN (Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute)
KWON SUK-TAE (Department of Genetic Engineering, Sungkyunkwan University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1359-1367 More about this Journal
Abstract
The gene encoding Pyrobaculum arsenaticum DNA polymerase (Par DNA polymerase) was cloned and sequenced. The gene consists of 2,361 bp coding for a protein with 786 amino acid residues. The deduced amino acid sequence of Par DNA polymerase showed a high similarity to archaeal family B-type DNA polymerases (Group I), and contained all of the motifs conserved in the family B-type DNA polymerases for $3 exonuclease and polymerase activities. The Par DNA polymerase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RP. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $Hirap^{TM}$ Heparin HP column chromatographies. The optimum pH of the purified enzyme was 7.5. The enzyme activity was activated by divalent cations, and was inhibited by EDTA and monovalent cations. The half-life of the enzyme at $95^{\circ}C$ was 6 h. Par DNA polymerase possessed associated $3 proofreading exonuclease activity, which is consistent with its deduced amino acid sequence. PCR experiment with Par DNA polymerase showed an amplified product, indicating that this enzyme might be useful in DNA amplification and PCR-based applications.
Keywords
Archaea; DNA polymerase; exonuclease activity; polymerase chain reaction; Pyrobaculum arsenaticum; thermostable enzyme;
Citations & Related Records

Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Barnes, W. M. 1994. PCR amplification of up to 35-kb DNA with high fidelity and high yield from$\lambda$ bacteriophage templates. Proc. Natl. Acad. Sci. USA 91: 2216-2220   DOI   ScienceOn
2 Blanco, L., A. Bernad, M. A. Blasco, and M. Salas. 1991. A general structure for DNA-dependent DNA polymerases. Gene 100: 27-38   DOI   PUBMED   ScienceOn
3 Cann, I. K. O., S. Ishino, N. Nomura, Y. Sako, and Y. Ishino. 1999. Two family B DNA polymerases from Aeropyrum pernix, an aerobic hyperthermophilic crenarchaeote. J. Bacteriol. 181: 5984-5992
4 Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881-10890   DOI   PUBMED   ScienceOn
5 Fitz-Gibbon, S. T., H. Ladner, U.-J. Kim, K. O. Stetter, M. I. Simon, and J. H. Miller. 2002. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA 99: 984-989
6 Hoe, H.-S., S.-K. Lee, D.-S. Lee, and S.-T. Kwon. 2003. Cloning, analysis, and expression of the gene for thermostable polyphosphate kinase of Thermus caldophilus GK24 and properties of the recombinant enzyme. J. Microbiol. Biotechnol. 13: 139-145
7 Jung, S. E., J. J. Choi, H. K. Kim, and S.-T. Kwon. 1997. Cloning and analysis of the DNA polymerase-encoding gene from Thermus filiformis. Mol. Cells 7: 769-776
8 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   PUBMED   ScienceOn
9 Lee, J.-H., Y.-D. Cho, J. J. Choi, Y.-J. Lee, H.-S. Hoe, H.-K. Kim, and S.-T. Kwon. 2003. High-level expression in Escherichia coli of alkaline phosphatase from Thermus caldophilus GK24 and purification of the recombinant enzyme. J. Microbiol. Biotechnol. 13: 660-665
10 Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3: 208-218   DOI
11 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York, U.S.A
12 Silhavy, T. J., M. L. Berman, and L. W. Enquist. 1984. Experiments with Gene Fusions. Cold Spring Harbor Laboratory Press, New York, U.S.A
13 Lundberg, K. S., D. D. Shoemaker, M. W. W. Adams, J. M. Short, J. A. Sorge, and E. J. Mathur. 1991. Highfidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108: 1-6   DOI   ScienceOn
14 Huber, H., M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer, and K. O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63-67   DOI   ScienceOn
15 Braithwaite, D. K. and J. Ito. 1993. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 21: 787-802   DOI   ScienceOn
16 Choi, J. J. and S.-T. Kwon. 2004. Cloning, expression, and characterization of DNA polymerase from hyperthermophilic bacterium Aquifex pyrophilus. J. Microbiol. Biotechnol. 14: 1022-1030
17 Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576-4579
18 Erlich, H. A. 1989. PCR Technology: Principles and Applications for DNA Amplification. Stockton Press, New York, U.S.A
19 Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491   DOI   PUBMED
20 Truniger, V., J. M. Lazaro, M. Salas, and L. Blanco. 1996. A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. EMBO J. 15: 3430- 3441
21 Uemori, T., Y. Ishino, H. Doi, and I. Kato. 1995. The hyperthermophilic archaeon Pyrodictium occultum has two $\alpha$-like DNA polymerases. J. Bacteriol. 177: 2164-2177   DOI
22 Hanahan, D. and M. Meselson. 1980. Plasmid screening at high colony density. Gene 10: 63-67   DOI   ScienceOn
23 Sanger, F., A. R. Coulson, G. F. Hong, D. F. Hill, and G. B. Petersen. 1982. Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162: 729-773   DOI   PUBMED
24 Barns, S. M., C. F. Delwiche, J. D. Palmer, and N. R. Pace. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93: 9188-9193
25 Bae, J.-D., Y.-J. Cho, D.-I. Kim, D.-S. Lee, and H.-J. Shin. 2003. Purification and biochemical characterization of recombinant alanine dehydrogenase from Thermus caldophilus GK24. J. Microbiol. Biotechnol. 13: 628-631
26 Brown, J. R. and W. F. Doolittle. 1995. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl. Acad. Sci. USA 92: 2441- 2445
27 Reiter, W., U. Hudepohl, and W. Zillig. 1990. Mutational analysis of an archaebacterial promoter: Essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc. Natl. Acad. Sci. USA 87: 9509-9513   DOI   ScienceOn
28 Kornberg, A. and T. Baker. 1992. DNA Replication, 2nd Ed. Freeman and Company, New York, U.S.A
29 Lowry, O. H., N. J. Rosebrough, A. J. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275
30 Chien, A., D. B. Edgar, and J. M. Trela. 1976. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127: 1550-1557
31 Choi, J. J., S. E. Jung, H.-K. Kim, and S.-T. Kwon. 1999. Purification and properties of Thermus filiformis DNA polymerase expressed in Escherichia coli. Biotechnol. Appl. Biochem. 30: 19-25
32 Huber, R., M. Sacher, A. Vollmann, H. Huber, and D. Rose. 2000. Respiration of arsenate and selenate by hyperthermophilic archaea. Syst. Appl. Microbiol. 23: 305- 314   DOI   ScienceOn
33 Mattila, P., J. Korpela, T. Tenkanen, and K. Pitkanen. 1991. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase, an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 19: 4967-4973   DOI   ScienceOn
34 Nishioka, M., H. Mizuguchi, S. Fujiwara, S. Komatsubara, M. Kitabayashi, H. Uemura, M. Takagi, and T. Imanaka. 2001. Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. J. Biotechnol. 88: 141-149   DOI   ScienceOn
35 Dennis, P. P. 1997. Ancient ciphers: Translation in Archaea. Cell 89: 1007-1010   DOI   PUBMED   ScienceOn
36 Studier, F. W. and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130   DOI   PUBMED
37 Uemori, T., Y. Ishino, H. Toh, K. Asada, and I. Kato. 1993. Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res. 21: 259-265   DOI   ScienceOn
38 Kahler, M. and G. Antranikian. 2000. Cloning and characterization of a family B DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum islandicum. J. Bacteriol. 182: 655-663   DOI   ScienceOn
39 Cann, I. K. O. and Y. Ishino. 1999. Archaeal DNA replication: identifying the pieces to solve a puzzle. Genetics 152: 1249- 1267