• Title/Summary/Keyword: paper yarn textile

Search Result 55, Processing Time 0.02 seconds

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment (PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향)

  • Kim, Hyun Ah;Son, Hwang;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

A COMPUTATIONAL APPROACH TO DESIGN THE GEOMETRY OF THE AIR-TWIST NOZZLE (Air-twist 노즐 형상 설계의수치적 연구)

  • Juraeva, M.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.67-70
    • /
    • 2010
  • Spandex yarn requires a twisting process during winding and unwinding processes at the textile industry. The air-twist nozzle is widely used as part of the winding and unwinding. This paper describes computational approach to design the geometry of the air-twist nozzle. The nozzle has circular yarn-channel and the air-inlet which is perpendicularly connected to the yarn-channel with yarn-loading slit. The air-inlet of the nozzle is designed while measurements of the yarn-channel are fixed. The airflow inside the air-twist nozzle is simulated by using Computational Fluid Dynamic model. The Ansys CFX was used to perform steady simulations of the airflow for the air-twisting process. The vortical structure and the airflow pattern such as velocity streamline, vorticity, velocity of the air-twist nozzle are discussed. Computational results are compared with experimental results in this paper.

  • PDF

Investigation of Inter Fiber Cohesion in Yarns. I. Influence of Certain Spinning Parameters on the Cohesion in Cotton Yarns

  • Gokarneshan N.;Ghosh Anindya;Anbumani N.;Subramaniam V.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.336-338
    • /
    • 2005
  • This paper investigates the influence of raw material and process parameters in spinning that affect the inter fiber cohesion in yams. An instrument has been developed for measuring the minimum twist of cohesion. With regard to the raw material parameters, the influence of different cotton fiber mixings for a given count of yarn is investigated. Also the effect of spinning to varying counts for a given cotton variety is studied. With regard to the process parameters, studies have been carried out to investigate the influence of noil extraction in comber, number of draw frame passages, draft pressure in ring frame and direction of twist. Cohesion improved with increase in the noil extraction percentage in the comber. Increase in the number of draw frame passages also improved the cohesion. Draft pressure in ring frame improved the fiber cohesion in yarn up to a pressure of $2.1kg/cm^2$. Direction of twist had no effect on the cohesion.

Analysis on the Physical Property of Nylon High Tenacity Coarse Yarn and Fabric for Military and Technical Textiles (군용 및 산자용 나일론 고강력 태섬사 및 후직물의 물성 분석)

  • Kim, Seung-Jin;Kim, Sang-Ryong;Lee, Do-Hyun;Choi, Woo-Hyuk
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.43-48
    • /
    • 2009
  • This paper surveys the mechanical properties of nylon high tenacity coarse yarn and fabric for military and technical textiles. For this purpose, 6 kinds of yarns and 2 kinds of fabrics are prepared. The yarn physical properties such as yarn count, thermal shrinkages, and tensile properties are measured and discussed with the characteristics of the domestic and imported yarns. And, the physical and mechanical properties of these fabrics are also measured and discussed with the usage of these fabrics in the military and technical textiles fields. Hereafter, the differences of physical properties between domestic and foreign yarn specimens for high functional military and technical fabrics are estimated through this study.

Study on Thermoplastic Polyester Elastomer Coated Yarn for Replacing PVC Coated Yarn(1) (PVC 대체를 위한 열가소성 폴리에스테르 탄성중합체 코팅사 연구(1))

  • Young Ho Seo;See Woo Park;Myoung Jin Song;Hye Jin Hwang;Tae Hwan Oh
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.137-150
    • /
    • 2023
  • This paper investigated the applicability of polyester yarn coating using ther- moplastic polyester elastomer (TPEE) to replace polyvinyl chloride (PVC) coated yarn for blinds fabric. For this purpose, suitable TPEE for yarn coating was selected by measuring thermal and rheological properties and the yarn coating process conditions were investigated by changing variables such as extrusion temperature, die and nipple dimensions, take-up speed, and core yarn denier. TPEE coated yarns with a diameter of 0.3 and 0.4 mm were prepared, respectively. Tensile properties and cross-section uniformity revealed by a scanning electron microscopy (SEM) of the TPEE coated yarn were analyzed. Among several candidates, TPEE having a melt index of 35 and melting temperature of 153℃ was the most suitable for replacing PVC, and the opti- mum coating conditions for the TPEE coating yarn were a head temperature of 170℃ and core yarn denier of 420 denier. The selected TPEE coated yarns have enough ten- sile strength and uniformity to replace present PVC coated yarns, certified by SEM photograph.

A Study of Paper Couture Based on Paper Modeling Techniques

  • Hong, Sungsun
    • Journal of Fashion Business
    • /
    • v.18 no.3
    • /
    • pp.73-90
    • /
    • 2014
  • Paper, once known and used only as a medium for printing or handicrafts, is now being used in new fields including artistic clothing, and an environment-friendly material for fashion, while the functionality of its formative characteristics and esthetics have been newly highlighted. On this basis, this study performed a content analysis of paper couture and categorization of types of paper modeling techniques based on 904 paper couture submitted to paper fashion shows, exhibitions and contest exhibits from 2001 to 2013. Analysis results showed that paper textile types were most common at 86.64%, while techniques using laminating, bonding, overlapping or paper as-is represented 62.17%. Expressive techniques in which paper was cut or torn and attached to paper clothing was 11.62%, paper folding was 5.75%, drawing and coloring 4.65%, and finally, paper cutting was 2.65%. Meanwhile, among paper modeling techniques using paper yarn textiles, a paper weaving technique was 6.75%. Moreover, other techniques in which paper modeling techniques or subsidiary clothing was blended were 3.65%, and Dak peeling textiles were 1.33%. Paper paste moulding textiles types represented 1.44%, above all papier $m{\hat{a}}ch{\acute{e}}$ techniques of 0.55% and creasing and holding techniques were 0.88%. Paper is sufficient to express the artists' creativity as well as having qualities as an artistic medium, such as variability through combined use with other materials, variation in form, suitability for reuse of waste paper, and environmental friendliness. Also, various paper modeling techniques can be blended with textiles for a generalized technology that overcomes the limits of paper and textiles.

Wearable Personal Network Based on Fabric Serial Bus Using Electrically Conductive Yarn

  • Lee, Hyung-Sun;Park, Choong-Bum;Noh, Kyoung-Ju;SunWoo, John;Choi, Hoon;Cho, Il-Yeon
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.713-721
    • /
    • 2010
  • E-textile technology has earned a great deal of interest in many fields; however, existing wearable network protocols are not optimized for use with conductive yarn. In this paper, some of the basic properties of conductive textiles and requirements on wearable personal area networks (PANs) are reviewed. Then, we present a wearable personal network (WPN), which is a four-layered wearable PAN using bus topology. We have designed the WPN to be a lightweight protocol to work with a variety of microcontrollers. The profile layer is provided to make the application development process easy. The data link layer exchanges frames in a master-slave manner in either the reliable or best-effort mode. The lower part of the data link layer and the physical layer of WPN are made of a fabric serial-bus interface which is capable of measuring bus signal properties and adapting to medium variation. After a formal verification of operation and performances of WPN, we implemented WPN communication modules (WCMs) on small flexible printed circuit boards. In order to demonstrate the behavior of our WPN on a textile, we designed a WPN tutorial shirt prototype using implemented WCMs and conductive yarn.

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

Evaluation of Image Quality of Inkjet Printing on the Spun Polyester Fabrics

  • Park, Heung-Sup
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.61-71
    • /
    • 2006
  • This paper addresses the factors hindering the image quality of lines in inkjet printed on polyester fabric as printing media. Lines were printed onto different types of polyester fabrics in warp and filling directions. Line image quality including line width, edge blurriness, and edge raggedness was assessed. The effect of capillary wicking on line image quality of printed spun polyester fabric is discussed. The factors on the image quality include printing position(top of the yam or between the yarn), printing direction(warp or filling), yarn structures(filament or spun), thread size(yam or fiber), finishing, and ink properties(evaporation rate). More than 30% differences in image quality results were observed by changing the printing location on the spun polyester fabric. The best results of the image quality were obtained with the printed plain and spun polyester fabrics. The fiber sizes may affect capillary size; therefore, the image quality can be dissimilar. Types of finishing materials and inks greatly improve the line image quality on spun polyester fabrics.

Functional and Physical Properties of Weft Knit with Silver Slit Yarn (은 슬릿사 위편성물의 물성 및 기능성)

  • Jeong, Sam-Ho;Park, Jong-Sik;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.756-761
    • /
    • 2008
  • In this paper, silver slit yarns combined with cotton yarns were used to produce weft knits. The purpose of this study was to investigate the physical properties as well as the functional properties of weft knit with silver slit yarns. The six different weft knit fabrics were made from silver slit yarns varying knit structure and fabric density. One cotton weft knit was also knitted to compare the properties. Weft knits made from silver slit yarns were characterized by excellent antibacterial properties, electric magnetic shielding properties, UV-cut properties, anti-static properties, and air permeability. Although there were significant differences in the physical properties of different knit structure and the fabric density, weft knits with silver slit yarns were seen to have better end use properties and ideal for apparel than the cotton weft knits.