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E-textile technology has earned a great deal of interest in 
many fields; however, existing wearable network protocols 
are not optimized for use with conductive yarn. In this 
paper, some of the basic properties of conductive textiles 
and requirements on wearable personal area networks 
(PANs) are reviewed. Then, we present a wearable 
personal network (WPN), which is a four-layered 
wearable PAN using bus topology. We have designed the 
WPN to be a lightweight protocol to work with a variety 
of microcontrollers. The profile layer is provided to make 
the application development process easy. The data link 
layer exchanges frames in a master-slave manner in either 
the reliable or best-effort mode. The lower part of the data 
link layer and the physical layer of WPN are made of a 
fabric serial-bus interface which is capable of measuring 
bus signal properties and adapting to medium variation. 
After a formal verification of operation and performances 
of WPN, we implemented WPN communication modules 
(WCMs) on small flexible printed circuit boards. In order 
to demonstrate the behavior of our WPN on a textile, we 
designed a WPN tutorial shirt prototype using 
implemented WCMs and conductive yarn. 
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I. Introduction 

Mobile and ubiquitous computing devices have drastically 
changed our lifestyles and brought out increasing demands for 
more powerful computing services. However, these electronic 
devices are weighty and not secure when placed in pockets. 
Thus, people commonly fear losing these expensive electronic 
devices. Electronic textiles, or e-textiles, can provide a solution 
to these problems. Smart clothing made of e-textile 
technologies provides sufficient space or textile layers for 
electronic components, and users can easily keep track of their 
whereabouts. E-textiles have gained much interest in many 
fields of research such as medicine, military, and mobile 
entertainment [1]-[3]. 

Electronic components in e-textiles are normally distributed 
around/on the garment to gather local personal information and 
increase comfort. For this reason, a network is needed to 
connect embedded nodes to exchange control and data 
information. There are two known types of personal area 
networks (PANs): wired and wireless. Both types of network 
have been widely studied. However, wireless PANs such as 
Bluetooth, Zigbee, and wireless local area network suffer from 
interference, fading, and low data rates [4], [5].  

A number of wired e-textile networks have been proposed. 
Post and Orth [6] introduced the use of conductive yarns as a 
simple data bus. Gorlick [7] proposed a bus-type wearable 
PAN for power and data transfer using a controller area 
network as a physical layer (PHY). However, mechanical and 
electrical properties of conductive yarns were not considered. 
Wade and Asada [8] proposed a similar PAN using DC power 
line communication (PLC) PHY. They considered the 
impedance mismatching problem occurring on e-textile 
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platforms. However, the wearable DC PLC only applies to 
conductive fabric with high conductivity. The two studies on 
PAN also suffer from low data rates. Nakad and others [9] and 
Yoo and others [10] proposed fault-tolerant networks with 
mesh structures in which conductive yarns are woven into 
textiles at appropriate locations. However, mesh networks 
require redundant switches to handle network faults and 
maintain their robustness. Furthermore, when mesh-type 
networks are used, the garment design process is tightly 
coupled with the application design process. This can be 
problematic for fashion designers with little knowledge on 
electronics.  

Myung and others [11] identified various requirements of the 
e-textile network and performed an analysis on commercial 
field-bus protocols. They proposed that as a part of clothing, e-
textile network protocols should operate on flexible and 
elongable conductive textiles and withstand wear and tear that 
regular garments experience. They also held that e-textile 
technology should not impose restrictions on materials and 
fabrication methods of e-textile garments. Finally, to provide 
efficient networking services for e-textiles, they proposed that 
network topology should minimize the number of physical 
connections (often the cause of line failure), support various 
types of data traffic, and be fault-tolerant against gradual line 
damage. They concluded that no commercial field-bus 
protocols meet the requirements of the e-textile network. 

In order to maintain their mechanical flexibility and 
elongability, most conductive yarns are manufactured by 
twisting a number of filaments. Hence, the overall conductivity 
of a conductive yarn is determined by the conductivity of its 
filaments. Figure 1 shows the electrical equivalent circuit of a 
piece of conductive yarn.  

As the body-worn e-textiles are scratched and rubbed in real 
life, conductive coatings are abraded over time, gradually 
losing conductivity. Washing test results in research show that 
resistance of conductive yarns and fabrics linearly increase as 
they are washed [12]-[16]. The fabric serial-bus (FSB) interface 
proposed by Lee and others [17], which can detect the variation  

 

 

Fig. 1. (a) Photo of conductive yarn and (b) its electrical model.
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in line conductivity, allows the upper layers to use that 
information to control network parameters such as baud rates. 
However, details of its data link layer and application results on 
actual e-textiles were not introduced. 

In this paper, a set of wearable PAN protocols will be 
proposed. The data-link-layer protocol is capable of 
discovering and managing up to 64 embedded nodes and 
provides reliable and best-effort options to allow the trade-off 
between transmission success rate and time. It can also handle 
notification of signal line variation by adjusting network 
parameters accordingly. The profile layer protocol provides a 
set of application programming interfaces (APIs) to allow 
easier development of e-textile applications. Furthermore, we 
designed our network protocol stack to be light enough for 
microcontrollers with limited memory resources. The resulting 
code size of our software protocol stack is less than 42 kB. To 
verify the operation of our network protocol, we implemented 
FSB hardware on a flexible printed circuit board (PCB) and 
designed an e-textile shirt with five embedded nodes. 

II. Wearable Personal Network Protocol  

1. Wearable Personal Network Protocol Architecture 

The wearable personal network (WPN) has a wired network 
protocol for devices embedded in a garment. The embedded 
devices may have different functions: biological and 
environmental sensing, user input/output, storage for large 
multimedia data, and wireless network interfacing [18]. The 
WPN is designed to provide a set of APIs for easy 
development of various embedded nodes. WPN can also 
handle various types of network traffic. This subsection 
describes the overall architecture of the WPN protocol.  

The WPN is based on a dual-lined, serial bus topology as 
shown in Fig. 2. It is advantageous in scalability because it is 
easy to append a new route or add new devices to the existing 
network.  

 

 

Fig. 2. WPN based on FSB. 
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Fig. 3. WPN protocol architecture. 
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Embedded devices in the WPN communicate with other 
devices using the WPN communication module (WCM). The 
protocol stack of WCM consists of a profile layer, a data link 
layer, and a PHY (see Fig 3). FSB forms a part of the data link 
layer, including medium access control (MAC) and a PHY. 
FSB is a serial bus interface that uses conductive yarns as a 
communication medium [17].  

Both the profile layer and the data link layer of WCM 
provide a set of data communication and network management 
APIs for applications on each embedded devices. The profile 
layer is designed to provide convenience and interoperability 
for device applications. The data link layer performs packet 
encapsulation/decapsulation and controls packet exchange 
sequences using a master-slave mechanism. 

2. Profile Layer 

In a WPN environment, various devices can be implemented 
as host or peripheral nodes. Thus, different application 
programs need to be ported on each device. In order to 
successfully communicate among these embedded devices, 
their application programs need to use the correct 
communication API at the right moment. 

In order to improve convenience in application design and 
interoperability among applications, a guideline for data link 
protocol usage must be provided. In this study, we adopted a  

Table 1 Example of a profile. 

Device discovery profile 

Host 

Function
Short DiscoveryNode (unsigned char addr, unsigned 
char group) 

Description Periodically broadcasts the Discovery Message. 

Addr Logical address to be allocated to a node 

Argument
Group 

A node processes Discovery Message if 
“group” matches the last 8 bits of the 
node’s serial number 

Peripheral 

Function Unsigned short DSEventHandler (void) 

Description Recognizes the Discovery Messages 

Function Unsigned short DSEvent (char* framebuffer) 

Description Analyzes and processes the Discovery Message 

Argument Framebuffer
Address & group information of 
Discovery Message 

 

 

Fig. 4. Structure of device descriptor. 

struct DeviceDescriptor { 
  unsigned int deviceType; 
  unsigned long serialNum; 
  char deviceName[20]; 
  char description[256]; 
  char date[10];   // manufacture date  
  char vendor[30]; 
} 

 
 
method to use profiles in well-formed templates. Profiles are 
code templates for application developers as shown in Table 1. 
They can produce application programs by adding desired 
functions to the code templates. The profile method has already 
been applied to Bluetooth and Zigbee. 

Two device access profiles were defined for WPN: the 
device discovery profile defines a discovery procedure and the 
communication profile defines a data communication 
procedure between host and peripheral nodes. The 
communication profile is further classified into the sensor 
measurement profile for collecting sensory data from sensor 
nodes and the file transfer profile for providing file transfer 
protocol service. Two different versions of each profile were 
developed for host and peripheral nodes. 

The device discovery profile describes a sequence of device 
recognition on the e-textile. It is executed when a device is 
newly attached to the e-textile or when the e-textile is powered. 
As shown in Fig. 4, each device has a device descriptor to 
describe its hardware specification. The host node obtains 
information about the peripheral node by reading the node’s 
device descriptor. 
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Fig. 5. Procedure of device discovery profile. 
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According to this profile, the host node broadcasts the 
discovery message that contains the address value and the 
group value to all the nodes in the bus. The address value is an 
identifier to be allocated to a node, and the group value is a  
four bit number that selects the group of devices to respond to 
the broadcast. Only the devices with matching group bits, the 
last four bits of the serial number, respond after a random 
backoff, and only the device that responds first acquires the 
broadcasted address. 

Figure 5 shows an example of the device discovery sequence. 
The host node broadcasts the discovery message which 
contains an address value of 1 and a group value of 3. Both 
node 1 and node 4 have the value 3 as the last four bits of their 
serial numbers. Hence, both nodes generate a response 
message that contains their own serial numbers. In order to 
reduce the chance of message collision, each node broadcasts 
the response message after waiting through a random delay. If 
waiting nodes hear a response message from another node 
during their own random delay period, they cancel the 
transmission of their response messages. Only the first node 
that responds proceeds with the discovery procedure, and the 
other nodes should look for next discovery message. 

After the host node receives the response message from a 
node, they exchange the approval message followed by the 
complete message to complete the discovery procedure. 

3. Data Link Layer 

A. Protocol Design 

The MAC of the data link layer was designed to work with a 
bus topology environment with no carrier sense multiple access 
function. Therefore, the data link layer uses a single host node 
polling of other peripheral nodes. The data link layer provides  

 

Fig. 6. State diagram of host node. 
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Fig. 7. State diagram of peripheral node. 
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both reliable and best-effort services. A transaction to exchange 
a frame by the reliable data link protocol starts with token 
frame (TF) transmission by the host and ends with 
transmission confirmation frame (TCF) reception by the host 
for the case of reliable communication. If an error or loss of a 
frame occurs, the transmission of a frame is repeated up to 
three times, with 10 ms timeout interval to guarantee quality of 
service (QoS). The timeout values can be set by QoS 
configuration. The data link protocol with a best-effort option 
does not use TCF or an error checking mechanism. 

State diagrams of the reliable data-link-layer protocols for the 
host and the peripheral nodes are shown in Figs. 6 and 7, 
respectively. A peripheral node normally waits to be polled by 
the host node in IDLE state. If a peripheral node receives a 
token (Data In) frame, it transmits a data frame (DF) waiting in 
its transmit buffer and waits for the acknowledgement in the 
“wait TC (ACK)” state as shown in Fig. 7. When the 
peripheral node receives a TCF, it also replies with a TCF to 
the host node and waits in the “Semi-IDLE D1” state. This 
state is to ensure that the host node has received the reply  
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correctly. If the host node does not retransmit the TCF within a 
certain time interval, the peripheral node knows that the host 
node has ended this transaction successfully and returns to the 
IDLE state. 

B. Frame Structure 

Each field in the message frame shown in Fig. 8 was defined 
to meet requirements of wearable PAN. Applications of WPN 
exchange sensory and command data as well as multimedia data, 
such as video and audio streams. Therefore, the data field was 
designed to handle from zero to 1,024 bytes of payload. The start 
flag and the end flag fields were designed to have specific bit 
patterns. This ensures that the baud of any incoming frame can 
be determined by analyzing the start flag. This also means frame 
consistency can be checked by analyzing the end flag. 

Message frames of the data link protocol are classified into 
TF, DF, control frame, and TCF. The type of a frame is 
specified at the header of each frame. TF and TCFs have a 
payload data of zero bytes. 

C. Application Programming Interface  

APIs of the data link layer are listed in Table 2. 
 

 

Fig. 8. Frame structure. 
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Table 2. Data link protocol interface. 

API name Function Host Peri.

DLProtocolOpen 
Initialization and activation of 
link layer protocol ○ ○

DLProtocolClose 
Inactivation of link layer 
protocol ○ ○

DLDataRead Read data from the node ○ ×

DLDataWrite Write (send) data to the node ○ ×

DLFrameSend Frame transmission (sending) ○ ○

DLRecvedFrame Frame reception ○ ○

DLEventHandler 
Processing a (read/write) event 
according to the host request × ○

DLChangeMachineState Change of machine condition × ○

DLChangeLogicalAddr Change of logical address × ○

DiscoveryNode 
Finds the node which a logical 
address is not allocated to and 
then allocates an address 

○ ×

DSEventHandler Processing discovery event × ○

 

 

Fig. 9. FSB controller in data link layer. 
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D. FSB Controller 

The lower part of the data link layer is the FSB controller that 
provides various data controls between the upper data-link 
layer and FSB transceiver as shown in Fig. 9. It provides 
carrier sensing, bus control, packet generation and analysis, 
de/serialization, and signal delay analysis functionalities. 

Each embedded device in WPN has different network 
bandwidth requirements depending on its function and 
condition of communication medium. The serializer-
deserializer (Ser-Des) of the FSB controller allows for the 
selection of different baud rates for each frame. Its ability to 
receive an incoming frame with an unknown baud is called 
auto-packet-baud-detection, and it is achieved by real-time 
measurement of bit patterns of the start flag in each incoming 
frame header [17]. The packet generator/analyzer block 
interfaces with the Ser-Des block to handle the data incoming 
frame whose structure is defined in Fig. 8. 

The carrier sensor and the bus control blocks initiate and 
terminate data activities on the bus using the PHY. The delay 
analyzer block measures signal delays of received signals using 
preprocessed signals from the PHY. Blocks in the upper data- 
link layer can read the delay value of each incoming frame 
from registers and use them to adjust network parameters such 
as the baud rate. 

4. Physical Layer 

The PHY of WPN uses the FSB transceiver [17]. The FSB 
transceiver uses a low voltage differential signaling scheme, 
which allows for low-power high-speed data transmission. In 
addition, the FSB transceiver has a differential amplifier and a 
dual-threshold high-speed comparator to process bus signals 
transmitted through two conductive yarns. The output of each 
comparator changes at a different voltage threshold, which 
allows the FSB controller in the data link layer to measure 
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the rising and falling times of bus signals. 

III. WPN Prototype 

To evaluate the operation of the developed WPN protocols, 
we implemented the WCM hardware on small flexible PCB 
and designed a WPN tutorial shirt with one host and four 
peripheral nodes. 

1. WPN Communication Module  

Figure 10 shows a picture of WCM hardware prototype 
which includes the lower part of the data link layer and the 
PHY of WPN. The lower part of the data link layer was 
implemented on a field programmable gate array (FPGA) 
running at 50 MHz. Upper layers of the WPN and device 
applications are implemented in a microcontroller. The WCM 
hardware allows the register access using a serial peripheral 
interface (SPI) which is common in most microcontrollers and 
embedded processors. 

The prototype module has two conductive snap buttons to be 
attached on the shirt where a dual-wire bus made of the 
conductive yarn is sewn. It also has an SPI port to enable 
interfacing between the microcontroller unit (MCU) and the 
FPGA. Finally, the prototype module has a removable joint test 
action group connector for programming the FPGA. 

2. Software Protocol Stack 

Two versions of the data-link-layer protocol were 
implemented using C language. A desktop version was 
developed for PCs with an x86 processor using user datagram 
protocol broadcast over Ethernet to evaluate frame exchange 
logics of the protocol. An embedded version was implemented 
for MSP430 series microcontrollers. A hardware-dependent  
 

  

Fig. 10. WCM prototype and MCU. 
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Table 3. Number of test cases and test results. 

Host Peripheral 
Test subject 

Test Pass Test Pass 

IDLE status  11 11 11 11 

Inactive status  – – 11 11 

Data read 22 22 22 22 

Control data write 22 22 22 22 

Data write 22 22 22 22 

Table 4. Performance evaluation results. 

Data read 
Experiment 
environment Desktop MCU 

Commun. type BE R BE R BE R 

Target Node 1 Node 1 Node 2 Node 2 Node 1 Node 1

No. of success 4,999 5,000 4,994 5,000 4,769 4,972

Success rate (%) 99.98 100 99.88 100 95.38 99.44

Data write 
Experiment 
environment Desktop MCU 

Commun. type BE R BE R BE R 

Target Node 1 Node 1 Node 2 Node 2 Node 1 Node 1

No. of success 5,000 5,000 5,000 5,000 4,840 4,979

Success rate (%) 100 100 100 100 96.8 99.58

 Note. BE: best-effort option 
R: reliable option 

 
portion of the data link protocol was implemented with a 
hardware abstraction layer to help ease development of a 
protocol stack for other microprocessors. A list of the data-link- 
layer protocol APIs is shown in Table 2. 

To evaluate the operation of the data link layer, we 
performed a formal protocol test. The test suite was derived 
from state diagrams of the protocol using ISO tree and tabular- 
combined notation forms and tested with the tools from Onnet 
Technologies. The number of test cases and test results are 
shown in Table 3. The data-link-layer protocol passed all 165 
cases. 

Communication performances between two desktop PCs 
and two WPN nodes with WCMs were tested with the 
implemented software protocol stack. The test consisted of a 
total of 5,000 data exchanges between a host node and a 
peripheral node. Each data exchange occurred at a 300 ms 
interval, and both the reliable and best-effort options were 
tested. Experiment results in Table 4 indicate that all the data 
were successfully delivered in the desktop environment using 
the reliable option. However, the mean success rate of the best- 
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Table 5. Transaction time (ms). 

Data read Data write 
 

Avg. Min. Max. Avg. Min. Max.
BE 10.9 4.8 14.4 <1 – – 
R 20.4 14.4 30.4 20.0 14.4 30.4 

 Note. BE: best-effort option 
R: reliable option 

 
effort data-read operation was reduced to 99.93%. Under an 
MCU environment, the mean success rates of the best-effort 
and the reliable operations were 96.09% and 99.51%, 
respectively. 

Table 5 shows the average transaction time results of 5,000 
data read and data write transactions between a host node and 
a peripheral node. For data read and write transactions,    
32 bytes of data payload were used. In the case of reliable 
transaction, we measured the time at the host node from 
transmitting a token until receiving data/TCF. Since best-
effort transactions do not exchange TCFs, their processing 
times and the transmission delays on the link are excluded in 
the best-effort transaction times. Hence, its results are shorter 
than that of reliable ones. Also, for the best-effort case, the 
transaction time of data write is much shorter than that of data 
read because the data write operation using the best-effort 
option is accomplished by only sending one frame from the 
host node. 

3. Verification of WPN Using the Tutorial Shirt 

We implemented the WPN tutorial shirt with five embedded 
nodes as shown in Fig. 11 to demonstrate operation of the 
proposed WPN protocol and its implementation. Each 
embedded node consists of a WCM hardware board and a 
microcontroller board. Peripheral nodes are equipped with an 
ambient temperature sensor and a light sensor, a textile touch 
user interface (UI) that can recognize five touch gestures, a 
character liquid crystal display (LCD) for information display, 
and an MP3 codec. The host node plays the role of the master. 
Each embedded device is attached to a serial bus with two 
conductive yarns sewn on the WPN tutorial shirt as marked in 
Fig. 11. 

The microcontroller on each peripheral node is loaded with 
an application that manages its sensor and actuator. The host 
node is loaded with a bridge application which polls and routes 
packets among peripheral nodes. As shown in Fig. 11, the 
operation of the WPN tutorial shirt can be verified by the 
information displayed on the LCD. It displays the ambient 
temperature and illumination values, the number of WPN  
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nodes, the title of the song playing in the MP3 codec, and 
current network information, such as baud rates and measured 
signal delay in periods of 20 ns. 

Additionally, to demonstrate the FSB’s ability to sense the 
status of the communication medium and assign appropriate 
baud rates, we created a worn-out path between the MP3 node 
and the host node, and we appended a parallel route with snap 
buttons. Opening of these snap buttons simulates abrasion of 
the conductive yarn bus, and closing of them simulates 
repairing damaged routes. 

As peripheral nodes on the WPN tutorial shirt are switched 
on, the host node discovers them and sends the information to 
the display node to update the node count in LCD display. The 
temperature and light node periodically senses the current 
temperature and illumination and sends them to the host node, 
which forwards the information to the display node for an 
update. Tabbing the textile touch UI with a finger indicates a 
play/pause gesture. Upon recognition of a control gesture, the 
touch UI node sends control information to the host node, 
which forwards the commands to the MP3 node. 

The behavior of WPN to a line failure can be tested with two 
snap buttons at the upper left chest. When we unsnap these 
buttons, the connection between the MP3 node and the host 
node is only made of the worn-out conductive yarn with low 
conductivity. The FSB hardware detects a change of the signal 
delay due to the low conductivity of the communication wire 
as soon as the first frame is sent through the worn-out 
conductive yarn. This information is stored in registers in the 
data link layer, and an interrupt is generated. The data link layer 
at the host node uses this information to adjust the network 
parameter, and updated baud-rate information is sent to the 
display node. When buttons are unsnapped, we can observe 
that the signal delay value displayed in the LCD increases from 
one to ten, and the baud rate decreases from 10 Mbps to      
1 Mbps. 
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IV. Conclusion 

E-textile technology has received much expectation as the 
next generation wearable computing technology. Some of 
simple items such as iPod jackets have already reached the 
market. However, in order to design more powerful e-textiles 
with intelligent ubiquitous services, basic infrastructures, such 
as a wearable PAN, must be provided. 

In this paper, we proposed a wearable personal network 
(WPN): a four-layered wearable PAN protocol using FSB. 
WPN’s light design is suitable for microprocessors and 
provides a profile layer for easy development of application 
programs. The resulting code size of the software protocol 
stack was 42 kB, and communication success rates between 
two WPN communication modules using a reliable mode were 
99.44% (read) and 99.58% (write). We implemented FSB 
hardware which comprises the lower part of the data link layer 
and the physical layer on a small flexible PCB board. We also 
designed a WPN tutorial shirt to evaluate network 
communication performance and to demonstrate the use of the 
WPN protocol. When the conductivity of the conductive yarn 
decreased on the shirt, the WPN network adjusted the network 
baud rate from 10 Mbps to 1 Mbps in real-time. The resulting 
prototype shirt showed that the WPN protocol can handle 
various types of network traffic, such as sensory, command, 
and multimedia data, as well as adapt to communication line 
faults due to the abrasion of conductive yarns. 

Concerning future applications, we are developing a new 
transceiver circuit that can measure more bus signal 
information, such as signal attenuation and impedance 
mismatches. Also, we plan to implement WCM hardware as a 
system-on-chip or as an intellectual property core for 
microcontrollers. 
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