
ETRI Journal, Volume 32, Number 5, October 2010 © 2010 Hyung Sun Lee et al. 713

E-textile technology has earned a great deal of interest in
many fields; however, existing wearable network protocols
are not optimized for use with conductive yarn. In this
paper, some of the basic properties of conductive textiles
and requirements on wearable personal area networks
(PANs) are reviewed. Then, we present a wearable
personal network (WPN), which is a four-layered
wearable PAN using bus topology. We have designed the
WPN to be a lightweight protocol to work with a variety
of microcontrollers. The profile layer is provided to make
the application development process easy. The data link
layer exchanges frames in a master-slave manner in either
the reliable or best-effort mode. The lower part of the data
link layer and the physical layer of WPN are made of a
fabric serial-bus interface which is capable of measuring
bus signal properties and adapting to medium variation.
After a formal verification of operation and performances
of WPN, we implemented WPN communication modules
(WCMs) on small flexible printed circuit boards. In order
to demonstrate the behavior of our WPN on a textile, we
designed a WPN tutorial shirt prototype using
implemented WCMs and conductive yarn.

Keywords: E-textile, wearable computer, personal area
network, serial bus topology.

Manuscript received Mar. 12, 2010; revised Aug. 6, 2010; accepted Aug. 9, 2010.
This work was supported by the IT R&D program of MKE/KEIT (2008-F-048, Wearable

Personal Companion for u-Computing Collaboration).
Hyung Sun Lee (phone: +82 42 860 6931, email: hslee77@etri.re.kr), Kyoung Ju Noh

(email: kjnoh@etri.re.kr), John Sunwoo (email: bistdude@etri.re.kr), and Il-Yeon Cho (email:
iycho@etri.re.kr) are with the Software Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Choong Bum Park (email: here4you@cnu.ac.kr) and Hoon Choi (email: hc@cnu.ac.kr) are
with the Mobile Distributed Computing Laboratory, Chungnam National University, Daejeon,
Rep. of Korea.

doi:10.4218/etrij.10.1510.0084

I. Introduction

Mobile and ubiquitous computing devices have drastically
changed our lifestyles and brought out increasing demands for
more powerful computing services. However, these electronic
devices are weighty and not secure when placed in pockets.
Thus, people commonly fear losing these expensive electronic
devices. Electronic textiles, or e-textiles, can provide a solution
to these problems. Smart clothing made of e-textile
technologies provides sufficient space or textile layers for
electronic components, and users can easily keep track of their
whereabouts. E-textiles have gained much interest in many
fields of research such as medicine, military, and mobile
entertainment [1]-[3].

Electronic components in e-textiles are normally distributed
around/on the garment to gather local personal information and
increase comfort. For this reason, a network is needed to
connect embedded nodes to exchange control and data
information. There are two known types of personal area
networks (PANs): wired and wireless. Both types of network
have been widely studied. However, wireless PANs such as
Bluetooth, Zigbee, and wireless local area network suffer from
interference, fading, and low data rates [4], [5].

A number of wired e-textile networks have been proposed.
Post and Orth [6] introduced the use of conductive yarns as a
simple data bus. Gorlick [7] proposed a bus-type wearable
PAN for power and data transfer using a controller area
network as a physical layer (PHY). However, mechanical and
electrical properties of conductive yarns were not considered.
Wade and Asada [8] proposed a similar PAN using DC power
line communication (PLC) PHY. They considered the
impedance mismatching problem occurring on e-textile

Wearable Personal Network Based on Fabric
Serial Bus Using Electrically Conductive Yarn

Hyung Sun Lee, Choong Bum Park, Kyoung Ju Noh, John Sunwoo,
Hoon Choi, and Il-Yeon Cho

714 Hyung Sun Lee et al. ETRI Journal, Volume 32, Number 5, October 2010

platforms. However, the wearable DC PLC only applies to
conductive fabric with high conductivity. The two studies on
PAN also suffer from low data rates. Nakad and others [9] and
Yoo and others [10] proposed fault-tolerant networks with
mesh structures in which conductive yarns are woven into
textiles at appropriate locations. However, mesh networks
require redundant switches to handle network faults and
maintain their robustness. Furthermore, when mesh-type
networks are used, the garment design process is tightly
coupled with the application design process. This can be
problematic for fashion designers with little knowledge on
electronics.

Myung and others [11] identified various requirements of the
e-textile network and performed an analysis on commercial
field-bus protocols. They proposed that as a part of clothing, e-
textile network protocols should operate on flexible and
elongable conductive textiles and withstand wear and tear that
regular garments experience. They also held that e-textile
technology should not impose restrictions on materials and
fabrication methods of e-textile garments. Finally, to provide
efficient networking services for e-textiles, they proposed that
network topology should minimize the number of physical
connections (often the cause of line failure), support various
types of data traffic, and be fault-tolerant against gradual line
damage. They concluded that no commercial field-bus
protocols meet the requirements of the e-textile network.

In order to maintain their mechanical flexibility and
elongability, most conductive yarns are manufactured by
twisting a number of filaments. Hence, the overall conductivity
of a conductive yarn is determined by the conductivity of its
filaments. Figure 1 shows the electrical equivalent circuit of a
piece of conductive yarn.

As the body-worn e-textiles are scratched and rubbed in real
life, conductive coatings are abraded over time, gradually
losing conductivity. Washing test results in research show that
resistance of conductive yarns and fabrics linearly increase as
they are washed [12]-[16]. The fabric serial-bus (FSB) interface
proposed by Lee and others [17], which can detect the variation

Fig. 1. (a) Photo of conductive yarn and (b) its electrical model.

δr δr δr
Left end Right end

(a) AmberStrand conductive yarn1) (b) Electrical equivalent circuit

1mm

 1) http://www.amberstrand.com/

in line conductivity, allows the upper layers to use that
information to control network parameters such as baud rates.
However, details of its data link layer and application results on
actual e-textiles were not introduced.

In this paper, a set of wearable PAN protocols will be
proposed. The data-link-layer protocol is capable of
discovering and managing up to 64 embedded nodes and
provides reliable and best-effort options to allow the trade-off
between transmission success rate and time. It can also handle
notification of signal line variation by adjusting network
parameters accordingly. The profile layer protocol provides a
set of application programming interfaces (APIs) to allow
easier development of e-textile applications. Furthermore, we
designed our network protocol stack to be light enough for
microcontrollers with limited memory resources. The resulting
code size of our software protocol stack is less than 42 kB. To
verify the operation of our network protocol, we implemented
FSB hardware on a flexible printed circuit board (PCB) and
designed an e-textile shirt with five embedded nodes.

II. Wearable Personal Network Protocol

1. Wearable Personal Network Protocol Architecture

The wearable personal network (WPN) has a wired network
protocol for devices embedded in a garment. The embedded
devices may have different functions: biological and
environmental sensing, user input/output, storage for large
multimedia data, and wireless network interfacing [18]. The
WPN is designed to provide a set of APIs for easy
development of various embedded nodes. WPN can also
handle various types of network traffic. This subsection
describes the overall architecture of the WPN protocol.

The WPN is based on a dual-lined, serial bus topology as
shown in Fig. 2. It is advantageous in scalability because it is
easy to append a new route or add new devices to the existing
network.

Fig. 2. WPN based on FSB.

Wearable personal network

Intersection

Devices
• Embedded microsystems
- Sensors, signal processing,...

• Attachable peripherals
- Display, keypad, GPS,...

• Carry on appliances
- MP3 player,...

Conductive
yarn

ETRI Journal, Volume 32, Number 5, October 2010 Hyung Sun Lee et al. 715

Fig. 3. WPN protocol architecture.

- Frame de/serialize
- Transmission rate adaption
- Medium access control

- Message exchange sequence

Data link layer

Physical layer

Profile layer
Device access profile

- Device discovery profile

- Sensor measurement profile
- File transfer profile

Communication profile

Application layer

Wearable personal network

Conductive yarn

D
ev

ic
es

FS
B

 (f
ab

ric
 se

ria
l b

us
)

W
PN

 c
om

m
un

ic
at

io
n

m
od

ul
e

Embedded devices in the WPN communicate with other
devices using the WPN communication module (WCM). The
protocol stack of WCM consists of a profile layer, a data link
layer, and a PHY (see Fig 3). FSB forms a part of the data link
layer, including medium access control (MAC) and a PHY.
FSB is a serial bus interface that uses conductive yarns as a
communication medium [17].

Both the profile layer and the data link layer of WCM
provide a set of data communication and network management
APIs for applications on each embedded devices. The profile
layer is designed to provide convenience and interoperability
for device applications. The data link layer performs packet
encapsulation/decapsulation and controls packet exchange
sequences using a master-slave mechanism.

2. Profile Layer

In a WPN environment, various devices can be implemented
as host or peripheral nodes. Thus, different application
programs need to be ported on each device. In order to
successfully communicate among these embedded devices,
their application programs need to use the correct
communication API at the right moment.

In order to improve convenience in application design and
interoperability among applications, a guideline for data link
protocol usage must be provided. In this study, we adopted a

Table 1 Example of a profile.

Device discovery profile

Host

Function
Short DiscoveryNode (unsigned char addr, unsigned
char group)

Description Periodically broadcasts the Discovery Message.

Addr Logical address to be allocated to a node

Argument
Group

A node processes Discovery Message if
“group” matches the last 8 bits of the
node’s serial number

Peripheral

Function Unsigned short DSEventHandler (void)

Description Recognizes the Discovery Messages

Function Unsigned short DSEvent (char* framebuffer)

Description Analyzes and processes the Discovery Message

Argument Framebuffer
Address & group information of
Discovery Message

Fig. 4. Structure of device descriptor.

struct DeviceDescriptor {
 unsigned int deviceType;
 unsigned long serialNum;
 char deviceName[20];
 char description[256];
 char date[10]; // manufacture date
 char vendor[30];
}

method to use profiles in well-formed templates. Profiles are
code templates for application developers as shown in Table 1.
They can produce application programs by adding desired
functions to the code templates. The profile method has already
been applied to Bluetooth and Zigbee.

Two device access profiles were defined for WPN: the
device discovery profile defines a discovery procedure and the
communication profile defines a data communication
procedure between host and peripheral nodes. The
communication profile is further classified into the sensor
measurement profile for collecting sensory data from sensor
nodes and the file transfer profile for providing file transfer
protocol service. Two different versions of each profile were
developed for host and peripheral nodes.

The device discovery profile describes a sequence of device
recognition on the e-textile. It is executed when a device is
newly attached to the e-textile or when the e-textile is powered.
As shown in Fig. 4, each device has a device descriptor to
describe its hardware specification. The host node obtains
information about the peripheral node by reading the node’s
device descriptor.

716 Hyung Sun Lee et al. ETRI Journal, Volume 32, Number 5, October 2010

Fig. 5. Procedure of device discovery profile.

Cancel

Control (Approval)

Data (Serial number)

Host Node 1 Node 4

Random
delay

Data (Complete)

Serial number
xxxxx 153

Random
delay

Serial number
xxxxx 233

Data (Control.Discovery, Addr[01], Group[03])

×

According to this profile, the host node broadcasts the
discovery message that contains the address value and the
group value to all the nodes in the bus. The address value is an
identifier to be allocated to a node, and the group value is a
four bit number that selects the group of devices to respond to
the broadcast. Only the devices with matching group bits, the
last four bits of the serial number, respond after a random
backoff, and only the device that responds first acquires the
broadcasted address.

Figure 5 shows an example of the device discovery sequence.
The host node broadcasts the discovery message which
contains an address value of 1 and a group value of 3. Both
node 1 and node 4 have the value 3 as the last four bits of their
serial numbers. Hence, both nodes generate a response
message that contains their own serial numbers. In order to
reduce the chance of message collision, each node broadcasts
the response message after waiting through a random delay. If
waiting nodes hear a response message from another node
during their own random delay period, they cancel the
transmission of their response messages. Only the first node
that responds proceeds with the discovery procedure, and the
other nodes should look for next discovery message.

After the host node receives the response message from a
node, they exchange the approval message followed by the
complete message to complete the discovery procedure.

3. Data Link Layer

A. Protocol Design

The MAC of the data link layer was designed to work with a
bus topology environment with no carrier sense multiple access
function. Therefore, the data link layer uses a single host node
polling of other peripheral nodes. The data link layer provides

Fig. 6. State diagram of host node.

wait TC
(ACK)

C1

Timeout/
Data retransmission

TC receive/
Data transmission

IDLE

Timeout/
Token (Data In)
retransmission

Token (Control) transfer request/
Token (Control) transmission TC receive

TC receive

TC receive
TC receive/

Data retransmission

wait TC
(ACK)

TC receive

TC receive/
Data retransmission

Timeout/
Data retransmission

Data receive/
TC retransmission

TC receive

TC receive

Timeout/
Token (Control)
retransmission

wait TC
(ACK)

C2

wait TC
(ACK)

D2

wait TC
(ACK)

D1

wait Data
(Data In)

TC (ACK) receive/
Data transmission Timeout/

Token (Data Out)
retransmission

Token (Data In) transfer request/
Token (Data In) transmission

Token (Data Out) transfer request/
Token (Data Out) transmission D

at
a

re
ce

iv
e/

TC

 tr
an

sm
is

sio
n

Timeout/TC
retransmission

Fig. 7. State diagram of peripheral node.

Semi-
IDLE_C

wait Data
(Control)

Semi-
IDLE_D1

Inactive IDLE wait TC
(ACK)

Semi-
IDLE_D2

wait Data
(Data Out)

Data receive/
TC retransmission

Data receive/Control
process, TC transmission

Timeout/
TC retransmission

Token (Control)
receive/

TC transmission
TC receive/

TC transmission

Timeout Token (Control) receive/
TC transmission

Timeout

Token receive/
Token delivery

IDLE transition request

Inactive transition request

Timeout

Data receive/
TC transmission

All Token
receive/

TC transmission

Data receive/
TC retransmission

Timeout/
TC retransmission

Token (Data Out) receive/
TC retransmission

Token (Data In) receive/
Data transmission

Token (Data Out) receive/
TC transmission

Timeout/
Data

retransmission

Token (Data In)
receive/

Data retransmission

TC
 re

ce
iv

e/

TC
 tr

an
sm

is
sio

n

Token receive/
Token delivery

Token receive/
Token delivery

both reliable and best-effort services. A transaction to exchange
a frame by the reliable data link protocol starts with token
frame (TF) transmission by the host and ends with
transmission confirmation frame (TCF) reception by the host
for the case of reliable communication. If an error or loss of a
frame occurs, the transmission of a frame is repeated up to
three times, with 10 ms timeout interval to guarantee quality of
service (QoS). The timeout values can be set by QoS
configuration. The data link protocol with a best-effort option
does not use TCF or an error checking mechanism.

State diagrams of the reliable data-link-layer protocols for the
host and the peripheral nodes are shown in Figs. 6 and 7,
respectively. A peripheral node normally waits to be polled by
the host node in IDLE state. If a peripheral node receives a
token (Data In) frame, it transmits a data frame (DF) waiting in
its transmit buffer and waits for the acknowledgement in the
“wait TC (ACK)” state as shown in Fig. 7. When the
peripheral node receives a TCF, it also replies with a TCF to
the host node and waits in the “Semi-IDLE D1” state. This
state is to ensure that the host node has received the reply

ETRI Journal, Volume 32, Number 5, October 2010 Hyung Sun Lee et al. 717

correctly. If the host node does not retransmit the TCF within a
certain time interval, the peripheral node knows that the host
node has ended this transaction successfully and returns to the
IDLE state.

B. Frame Structure

Each field in the message frame shown in Fig. 8 was defined
to meet requirements of wearable PAN. Applications of WPN
exchange sensory and command data as well as multimedia data,
such as video and audio streams. Therefore, the data field was
designed to handle from zero to 1,024 bytes of payload. The start
flag and the end flag fields were designed to have specific bit
patterns. This ensures that the baud of any incoming frame can
be determined by analyzing the start flag. This also means frame
consistency can be checked by analyzing the end flag.

Message frames of the data link protocol are classified into
TF, DF, control frame, and TCF. The type of a frame is
specified at the header of each frame. TF and TCFs have a
payload data of zero bytes.

C. Application Programming Interface

APIs of the data link layer are listed in Table 2.

Fig. 8. Frame structure.

8 bit 8 bit 8 bit 16 bit 8 bit 8 bit0 to 1,024 bytes

Dest.
address

Frame
type

Start
flag

Sour.
address

Frame
seq. Data size CRC End

flagData

Table 2. Data link protocol interface.

API name Function Host Peri.

DLProtocolOpen
Initialization and activation of
link layer protocol ○ ○

DLProtocolClose
Inactivation of link layer
protocol ○ ○

DLDataRead Read data from the node ○ ×

DLDataWrite Write (send) data to the node ○ ×

DLFrameSend Frame transmission (sending) ○ ○

DLRecvedFrame Frame reception ○ ○

DLEventHandler
Processing a (read/write) event
according to the host request × ○

DLChangeMachineState Change of machine condition × ○

DLChangeLogicalAddr Change of logical address × ○

DiscoveryNode
Finds the node which a logical
address is not allocated to and
then allocates an address

○ ×

DSEventHandler Processing discovery event × ○

Fig. 9. FSB controller in data link layer.

Profile layer

Physical layer

Data link layer

Bus
control

Delay
analyzer

Packet
generator/
analyzer

Controls

Carrier
sensor

Upper data link

Ser-Des

Data link controller

D. FSB Controller

The lower part of the data link layer is the FSB controller that
provides various data controls between the upper data-link
layer and FSB transceiver as shown in Fig. 9. It provides
carrier sensing, bus control, packet generation and analysis,
de/serialization, and signal delay analysis functionalities.

Each embedded device in WPN has different network
bandwidth requirements depending on its function and
condition of communication medium. The serializer-
deserializer (Ser-Des) of the FSB controller allows for the
selection of different baud rates for each frame. Its ability to
receive an incoming frame with an unknown baud is called
auto-packet-baud-detection, and it is achieved by real-time
measurement of bit patterns of the start flag in each incoming
frame header [17]. The packet generator/analyzer block
interfaces with the Ser-Des block to handle the data incoming
frame whose structure is defined in Fig. 8.

The carrier sensor and the bus control blocks initiate and
terminate data activities on the bus using the PHY. The delay
analyzer block measures signal delays of received signals using
preprocessed signals from the PHY. Blocks in the upper data-
link layer can read the delay value of each incoming frame
from registers and use them to adjust network parameters such
as the baud rate.

4. Physical Layer

The PHY of WPN uses the FSB transceiver [17]. The FSB
transceiver uses a low voltage differential signaling scheme,
which allows for low-power high-speed data transmission. In
addition, the FSB transceiver has a differential amplifier and a
dual-threshold high-speed comparator to process bus signals
transmitted through two conductive yarns. The output of each
comparator changes at a different voltage threshold, which
allows the FSB controller in the data link layer to measure

718 Hyung Sun Lee et al. ETRI Journal, Volume 32, Number 5, October 2010

the rising and falling times of bus signals.

III. WPN Prototype

To evaluate the operation of the developed WPN protocols,
we implemented the WCM hardware on small flexible PCB
and designed a WPN tutorial shirt with one host and four
peripheral nodes.

1. WPN Communication Module

Figure 10 shows a picture of WCM hardware prototype
which includes the lower part of the data link layer and the
PHY of WPN. The lower part of the data link layer was
implemented on a field programmable gate array (FPGA)
running at 50 MHz. Upper layers of the WPN and device
applications are implemented in a microcontroller. The WCM
hardware allows the register access using a serial peripheral
interface (SPI) which is common in most microcontrollers and
embedded processors.

The prototype module has two conductive snap buttons to be
attached on the shirt where a dual-wire bus made of the
conductive yarn is sewn. It also has an SPI port to enable
interfacing between the microcontroller unit (MCU) and the
FPGA. Finally, the prototype module has a removable joint test
action group connector for programming the FPGA.

2. Software Protocol Stack

Two versions of the data-link-layer protocol were
implemented using C language. A desktop version was
developed for PCs with an x86 processor using user datagram
protocol broadcast over Ethernet to evaluate frame exchange
logics of the protocol. An embedded version was implemented
for MSP430 series microcontrollers. A hardware-dependent

Fig. 10. WCM prototype and MCU.

MCU
(data link & application)

FPGA
(data link & PHY)

Snap buttons for
connecting with
conductive yarn

SPI

Table 3. Number of test cases and test results.

Host Peripheral
Test subject

Test Pass Test Pass

IDLE status 11 11 11 11

Inactive status – – 11 11

Data read 22 22 22 22

Control data write 22 22 22 22

Data write 22 22 22 22

Table 4. Performance evaluation results.

Data read
Experiment
environment Desktop MCU

Commun. type BE R BE R BE R

Target Node 1 Node 1 Node 2 Node 2 Node 1 Node 1

No. of success 4,999 5,000 4,994 5,000 4,769 4,972

Success rate (%) 99.98 100 99.88 100 95.38 99.44

Data write
Experiment
environment Desktop MCU

Commun. type BE R BE R BE R

Target Node 1 Node 1 Node 2 Node 2 Node 1 Node 1

No. of success 5,000 5,000 5,000 5,000 4,840 4,979

Success rate (%) 100 100 100 100 96.8 99.58

 Note. BE: best-effort option
R: reliable option

portion of the data link protocol was implemented with a
hardware abstraction layer to help ease development of a
protocol stack for other microprocessors. A list of the data-link-
layer protocol APIs is shown in Table 2.

To evaluate the operation of the data link layer, we
performed a formal protocol test. The test suite was derived
from state diagrams of the protocol using ISO tree and tabular-
combined notation forms and tested with the tools from Onnet
Technologies. The number of test cases and test results are
shown in Table 3. The data-link-layer protocol passed all 165
cases.

Communication performances between two desktop PCs
and two WPN nodes with WCMs were tested with the
implemented software protocol stack. The test consisted of a
total of 5,000 data exchanges between a host node and a
peripheral node. Each data exchange occurred at a 300 ms
interval, and both the reliable and best-effort options were
tested. Experiment results in Table 4 indicate that all the data
were successfully delivered in the desktop environment using
the reliable option. However, the mean success rate of the best-

ETRI Journal, Volume 32, Number 5, October 2010 Hyung Sun Lee et al. 719

Table 5. Transaction time (ms).

Data read Data write

Avg. Min. Max. Avg. Min. Max.
BE 10.9 4.8 14.4 <1 – –
R 20.4 14.4 30.4 20.0 14.4 30.4

 Note. BE: best-effort option
R: reliable option

effort data-read operation was reduced to 99.93%. Under an
MCU environment, the mean success rates of the best-effort
and the reliable operations were 96.09% and 99.51%,
respectively.

Table 5 shows the average transaction time results of 5,000
data read and data write transactions between a host node and
a peripheral node. For data read and write transactions,
32 bytes of data payload were used. In the case of reliable
transaction, we measured the time at the host node from
transmitting a token until receiving data/TCF. Since best-
effort transactions do not exchange TCFs, their processing
times and the transmission delays on the link are excluded in
the best-effort transaction times. Hence, its results are shorter
than that of reliable ones. Also, for the best-effort case, the
transaction time of data write is much shorter than that of data
read because the data write operation using the best-effort
option is accomplished by only sending one frame from the
host node.

3. Verification of WPN Using the Tutorial Shirt

We implemented the WPN tutorial shirt with five embedded
nodes as shown in Fig. 11 to demonstrate operation of the
proposed WPN protocol and its implementation. Each
embedded node consists of a WCM hardware board and a
microcontroller board. Peripheral nodes are equipped with an
ambient temperature sensor and a light sensor, a textile touch
user interface (UI) that can recognize five touch gestures, a
character liquid crystal display (LCD) for information display,
and an MP3 codec. The host node plays the role of the master.
Each embedded device is attached to a serial bus with two
conductive yarns sewn on the WPN tutorial shirt as marked in
Fig. 11.

The microcontroller on each peripheral node is loaded with
an application that manages its sensor and actuator. The host
node is loaded with a bridge application which polls and routes
packets among peripheral nodes. As shown in Fig. 11, the
operation of the WPN tutorial shirt can be verified by the
information displayed on the LCD. It displays the ambient
temperature and illumination values, the number of WPN

Sensor

Display

Master

MP3P

Fig. 11. WPN tutorial shirt.

Close
switch

Open
switch

To
u c

h
U

/ I

Status
(play/stop)

Song playing
on MP3P

Baud rate
(MHz)

Delay

Temperature
(°C)

Illumination
(lux)

Number of
WPN nodes

WPN

nodes, the title of the song playing in the MP3 codec, and
current network information, such as baud rates and measured
signal delay in periods of 20 ns.

Additionally, to demonstrate the FSB’s ability to sense the
status of the communication medium and assign appropriate
baud rates, we created a worn-out path between the MP3 node
and the host node, and we appended a parallel route with snap
buttons. Opening of these snap buttons simulates abrasion of
the conductive yarn bus, and closing of them simulates
repairing damaged routes.

As peripheral nodes on the WPN tutorial shirt are switched
on, the host node discovers them and sends the information to
the display node to update the node count in LCD display. The
temperature and light node periodically senses the current
temperature and illumination and sends them to the host node,
which forwards the information to the display node for an
update. Tabbing the textile touch UI with a finger indicates a
play/pause gesture. Upon recognition of a control gesture, the
touch UI node sends control information to the host node,
which forwards the commands to the MP3 node.

The behavior of WPN to a line failure can be tested with two
snap buttons at the upper left chest. When we unsnap these
buttons, the connection between the MP3 node and the host
node is only made of the worn-out conductive yarn with low
conductivity. The FSB hardware detects a change of the signal
delay due to the low conductivity of the communication wire
as soon as the first frame is sent through the worn-out
conductive yarn. This information is stored in registers in the
data link layer, and an interrupt is generated. The data link layer
at the host node uses this information to adjust the network
parameter, and updated baud-rate information is sent to the
display node. When buttons are unsnapped, we can observe
that the signal delay value displayed in the LCD increases from
one to ten, and the baud rate decreases from 10 Mbps to
1 Mbps.

720 Hyung Sun Lee et al. ETRI Journal, Volume 32, Number 5, October 2010

IV. Conclusion

E-textile technology has received much expectation as the
next generation wearable computing technology. Some of
simple items such as iPod jackets have already reached the
market. However, in order to design more powerful e-textiles
with intelligent ubiquitous services, basic infrastructures, such
as a wearable PAN, must be provided.

In this paper, we proposed a wearable personal network
(WPN): a four-layered wearable PAN protocol using FSB.
WPN’s light design is suitable for microprocessors and
provides a profile layer for easy development of application
programs. The resulting code size of the software protocol
stack was 42 kB, and communication success rates between
two WPN communication modules using a reliable mode were
99.44% (read) and 99.58% (write). We implemented FSB
hardware which comprises the lower part of the data link layer
and the physical layer on a small flexible PCB board. We also
designed a WPN tutorial shirt to evaluate network
communication performance and to demonstrate the use of the
WPN protocol. When the conductivity of the conductive yarn
decreased on the shirt, the WPN network adjusted the network
baud rate from 10 Mbps to 1 Mbps in real-time. The resulting
prototype shirt showed that the WPN protocol can handle
various types of network traffic, such as sensory, command,
and multimedia data, as well as adapt to communication line
faults due to the abrasion of conductive yarns.

Concerning future applications, we are developing a new
transceiver circuit that can measure more bus signal
information, such as signal attenuation and impedance
mismatches. Also, we plan to implement WCM hardware as a
system-on-chip or as an intellectual property core for
microcontrollers.

Acknowledgment

The authors would like to thank Nohwan Myung, In-Geol
Baek, and Kyung-Min Park for their contribution in
developing the data-link-layer protocol.

References

[1] R.L. Ashok and D.P. Agrawal, “Next-Generation Wearable
Networks,” Computer, vol. 36, no. 11, Nov. 2003, pp. 31-39.

[2] R. LaRowe and C. Elliott, “Computer Networks for Wearable
Computing,” Fundamentals of Wearable Computers and
Augmented Reality, New Jersey, USA: Lawrence Erlbaum, 2001,
pp.715-745.

[3] F. Mizuno et al., “Development of a Wearable Computer System
with a Hands-Free Operation Interface for the Use of Home

Health Caregiver,” Frontiers of Med. Informat., vol. 13, no. 4,
July 2005, pp. 293-300.

[4] J.A. Gutiérrez, E.H. Callaway Jr., and R.L. Barrett Jr., Low-Rate
Wireless Personal Area Networks: Enabling Wireless Sensors
with IEEE 802.15.4, New York: IEEE Press, 2003, pp. 4-5.

[5] B. Koh and P.Y. Kong, “Performance Study on ZigBee-Based
Wireless Personal Area Networks for Real-Time Health
Monitoring,” ETRI J., vol. 28, no. 4, Aug. 2006, pp. 537-540.

[6] E.R. Post and M. Orth, “Smart Fabric or ‘Wearable Clothing’,”
Proc. 1st Int. Symp. Wearable Comput., Oct. 1997, pp. 167-168.

[7] M.M. Gorlick, “Electric Suspenders: A Fabric Power Bus and
Data Network for Wearable Digital Devices,” Proc. 3rd Int. Symp.
Wearable Comput., Oct. 1999, pp.114-121.

[8] E. Wade and H.H. Asada, “Wearable DC Powerline
Communication Network Using Conductive Fabrics,” Proc.
IEEE Int. Conf. Robot. Autom., Apr. 2004, pp. 4085-4090.

[9] Z. Nakad, M. Jones, and T. Martin, “Communications in
Electronic Textile Systems,” Proc. Int. Conf. Commun., June
2003, pp. 37-43.

[10] J. Yoo, S. Lee, and H.J. Yoo, “A 1.12 pJ/b Inductive Transceiver
with a Fault-Tolerant Network Switch for Multi-Layer Wearable
Body Area Network Applications,” IEEE J. Solid-State Circuits,
vol. 44, no. 11, Nov. 2009, pp. 2999-3010.

[11] N. Myung, I. Baek, and H. Choi, “Field-Bus Protocols for FAN,”
Proc. Int. Conf. Next-Generation Computing, Seoul, Rep. of Korea,
Nov. 2008, pp. 98-102 (in Korean).

[12] J. Hännikäinen et al., “Conductive Fibres in Smart Clothing
Applications,” Mechatronics for Safety, Security and Dependability
in a New Era, Elsevier B.V., 2006, pp. 395-400.

[13] R. Endo et al., “Preparation and Characterization of New Type
PVA/CuxS Nano Composite Conductive Fiber,” Proc. 11th Int.
Symp. Wearable Comput., Oct. 2007, pp. 125-126.

[14] B.S. Shim et al., “Smart Electronic Yarns and Wearable Fabrics
for Human Biomonitoring Made by Carbon Nanotube Coating
with Polyelectrolytes,” Nano Lett., vol. 8, no. 12, 2008, pp. 4151-
4157.

[15] S. Varnaitė and J. Katunskis, “Influence of Washing on the
Electric Charge Decay of Fabrics with Conductive Yarns,” Fibres
& Textile in Eastern Europe, vol. 17, no. 5, 2009, pp. 69-75.

[16] J. Slade et al., “Washing of Electrotextiles,” Proc. Mater.
Research Soc. Symp., vol. 736, 2003, pp. 99-108.

[17] H.S. Lee, J. Sunwoo, and D.W. Han, “Fabric Serial Bus: A Rate
Adaptive Serial Bus Network for E-Textile Platform,” Proc. Int.
Conf. Next-Generation Computing, Seoul, Rep. of Korea, Oct.
2009, pp. 238-241.

[18] G. Tröster, “SoT: System on Textile for Wearable Computing,”
The World of Electronic Packaging and System Integration, eds. B.
Michels and R. Aschenbrenner, 2004, pp. 114-119.

ETRI Journal, Volume 32, Number 5, October 2010 Hyung Sun Lee et al. 721

Hyung Sun Lee received his BS and MS
degrees in electrical engineering from KAIST
in 2000 and 2002, respectively, and his PhD
in electrical engineering and computer
science from KAIST in 2007. He is currently
a senior researcher at ETRI, Daejeon, Rep. of
Korea. His research interests include real-

time embedded systems, wearable computing, and intelligent textiles.

Choong Bum Park received his BS in
computer engineering from Kongju National
University, Gongju, Rep. of Korea, in 2004. He
currently works as a member of the research
staff at Mobile Distributed Computing
Laboratory in Chungnam National University.
His research interests include mobile computing,

wearable computing, ubiquitous computing, autonomic computing,
and mobile learning service systems.

Kyoung Ju Noh received her BE and MS in
computer sciences from Chonbuk National
University, Rep. of Korea, in 1999 and 2001,
respectively. She is currently a senior member
of the engineering staff at ETRI, Daejeon, Rep.
of Korea. Her research interests include
computer network and data communication.

John Sunwoo received his BS and MS in
electrical engineering from Auburn University
in 2003 and 2005, respectively. Since 2005, he
has worked at ETRI, Daejeon, Rep. of Korea,
developing wearable computing systems. He is
interested in designing a wearable BAN
communication controller for e-textiles.

Hoon Choi received his BS in computing
engineering from Seoul National University,
Rep. of Korea, in 1983 and his MS and PhD in
computer science from Duke University in
1990 and 1993, respectively. From 1983 to
1996, he was a senior member of technical staff
at ETRI, Daejeon, Rep. of Korea, where he

worked on LAN, broadband ISDN, and high-speed network systems.
Since 1996, he has been with Chungnam National University. His
research area is mobile/distributed computing. He has been involved in
several research projects on middleware for distributed computing,
mobile computing, and a software platform for cellular phone wireless
applications. He is currently interested in autonomic computing and
system software for wearable computers.

Il-Yeon Cho received his BS and MS in
industrial engineering from Sungkyunkwan
University, Rep. of Korea, in 1991 and 1993,
respectively. He received his PhD in computer
engineering from Chungnam National
University, Rep. of Korea, in 2007. Since 1993,
he has been working at ETRI, Daejeon, Rep. of

Korea, as a senior member of the engineering staff. From 1995 to 1996,
he was a visiting researcher at the Open Software Foundation (OSF)
Research Institute, US, and conducted collaborative research. Currently,
he is the head of the Wearable Computing Research Team at ETRI. He
is interested in developing wearable computers and embedded systems.

