• Title/Summary/Keyword: paper wastewater

Search Result 416, Processing Time 0.029 seconds

Effect of $N_2$-backflushing Time in Carbon Ceramic UF & MF System for Paper Wastewater Treatment

  • Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2005
  • The wastewater discharged from a paper plant was filtrated by 3 kinds of tubular carbon ceramic UF and MF membranes with $N_2$-backflushing. The filtration time (FT) was fixed at 8 min or 16 min, and $N_2$-backflushing time (BT) was changed in 0${\~}$60 sec. The optimal condition was discussed in the viewpoints of total permeate volume ($V_T$), dimensionless permeate flux (J/Jo) and resistance of membrane fouling ($R_f$). In the viewpoints of $V_T$, J/Jo and $R_f$, the optimal $N_2$-BT was 40 sec at both FT for M9 (MWCO: 300,000 Daltons) and C005 ($0.05{\mu}m$) membranes. However, for C010 ($0.1{\mu}m$) it was 10 sec at FT=8 min, and 20 sec at FT=16 min in the viewpoints of J/Jo and $R_f$, and 5 sec at both FT in the viewpoints of $V_T$. It means that the short $N_2$-BT could reduce the membrane fouling and recover the permeate flux sufficiently for MF membrane having a large pore size as C010. Average rejection rates of pollutants were higher than $99.0\%$ for turbidity and $22.8{\~}59.6\%$ for $COD_{cr}$, but rejection rates of total dissolved solid (TDS) were lower than $8.9\%$. Therefore, the low turbidity water purified in our system could be reused for paper process.

Development of Wastewater Treatment and Recycle Technology Using a Tubular Ceramic Ultrafiltration Membrane 1, Effect of Periodic Backflushing (관형 세라믹 한외여과막을 사용한 폐수처리 및 재활용기술개발 : 1, 주기적 역세척 효과)

  • 박진용
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 1999
  • A periodic backflushing was performed to reduce the membrane fouling of ultrafiltration for wastewater, and the effect and the optimum condition were investigated in this study. The alumina¬ceramic tubular membrane with pore size of 0.02${\mu}m$ was used for the wastewater treated by coagulation and sedimentation from two paper plants, of which A plant made toilet paper by recycling milk paper cartons and B plant recycled corrugated cardboards. And the effect of periodic backflushing to membrane fouling and quality of permeate were studied with a constant backflushing time of 3 sec. As results of measuring SS, TDS, and COD of source and permeate, the rejection rate of SS showed the highest value at the backflushing period of 15 see, which was the shortest time in these experiments, in case of waste¬water discharged from A plant. However, the rejection rate of COD had the highest value at the period of 30 sec for wastewater from both A and B plant. Then, the rejection rate of TDS was almost same at 30 and 60 sec for A plant wastewater, and the highest at 60 see for B plant. The effect of periodic back¬flushing to membrane fouling was investigated by change of permeate flux according to operating time. The permeate flux decreased slowly at the operation with backflushing, and was higher compared with that without backflushing in both case of A and B wastewater. But, the optimum period with the highest flux of A wastewater was different from that of B, because SS and COD of A was higher than those of Band TDS of B was higher than that of A.

  • PDF

Wastewater Treatment of Papermaking by Using Oyster Shells (굴폐각을 이용한 제지폐수 처리)

  • Cho Jun Hyung;Cho Jung Won;Lee Young Won;Lim Tawk lun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.4 s.107
    • /
    • pp.60-66
    • /
    • 2004
  • In this paper, oyster shell, diatomaceous earth, and active carbon were used as filter media for treating wastewater produced in paper mills. After filtering, the changes of COD and turbidity were investigated. As the results of estimating the efficiency of wasterwater treatment, porous oyster shell having higher specific surface area in powder was more effective than the others in removal of contaminants in waterwater, especially turbidity.

Designing a decision making system of inferring reasonable $O_2$Quantity needed to process wastewater via biological reaction (생물학적 하수처리에 소요되는 적정 폭기량의 판단 시스템 설계)

  • 이진락;양일화;이해영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.89-96
    • /
    • 2001
  • This paper presents a decision making technique of reasonable $O_2$quantity needed to resolve organic matter via microbe in wastewater treatment. Decision making system of inferring reasonable $O_2$quantity consists of three parts. The first part is to compute reasonable $O_2$quantity with given process data. The second part is to find output features of processed wastewater using process model when $O_2$quantity is changed to a value inferred from decision making system. The third part is to show the results of decision making system. In order to verify performance of proposed decision making system computer simulation was done with process data gathered during 40 days. Simulation result shows that $O_2$quantity can be reduced over 10% under the condition of satisfying the specifications for processed wastewater.

  • PDF

A Study for Drainage Pipe Construction Method using a Boring Machine (천공장치를 이용한 배수설비 연결관 시공 기술에 관한 연구)

  • Chang, Jae-Goo;Kang, Seon-Hong;Kim, Dong-Eun;Jung, Tae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.869-875
    • /
    • 2011
  • Ministry of Environment has been promoting BTL business of the sewer rehabilitation which continues from 2005 up to now. Sewer rehabilitation is classified into three parts : wastewater pipe rehabilitation, rainwater pipe rehabilitation and drainage equipment rehabilitation. Drainage equipment rehabilitation is that drainage pipe connects wastewater pipe directly without water-purifier. In the drainage equipment construction, it is inevitable to have the damage of ground structures(wall, gate and U drain, etc) when an open excavation method is used. Therefore it is necessary to develop non-excavation method to connect drainage pipe and wastewater pipe like jacking method to avoid the damage of ground structure. This paper has conducted an analysis of the non-excavation method using a boring machine attached to backhoe, which is issued the verification certificate of environmental technology according to the Development of and Support for Environmental Technology Act, article.7. The index set in this analysis was sectionalized to the condition of construction, the grade of drainage pipe, the size of excavated hole, the amount of waste cement concrete and asphalt concrete and the benefit effect compared to open excavation method.

Microbial Risk Assessment using E. coli in UV Disinfected Wastewater Irrigation on Paddy

  • Rhee, Han-Pil;Yoon, Chun-G.;Jung, Kwang-Wook;Son, Jang-Won
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.120-125
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution.A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhoodchildren.Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation.It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary waste water irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.

The importance of applying an appropriate approach to modelling wastewater treatment plants

  • Dzubur, Alma;Serdarevic, Amra
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.121-132
    • /
    • 2022
  • Wastewater treatment plants (WWTPs) are designed and built to remove contaminants from wastewater. WWTPs are composed of various facilities equipped with hydro-mechanical and electrical equipment. This paper presents a comparison of two different approaches for WWTPs modelling. Static modelling is suitable for determining the dimensions of facilities and equipment capacity. The special significance of this approach is for the design of new plants, i.e., when a very small number of input data on the quantities and composition of the influent wastewater is available. Dynamic modelling is expensive, time consuming and requires great expertise in the use of simulators, models and very good understanding of the treatment processes. Also, dynamic modelling is very important to use for optimization, consideration of future scenarios and also possible scenarios on the plant. The comparison of two approaches was made on the input data from the biggest and most important plant in Bosnia and Herzegovina (B&H)-WWTP Butila (Sarajevo). The main idea is to show the differences between two demanding accesses. It is important to know how to apply an adequate approach to research and solve the set task. The II phase of the plant Butila, which includes the removal of nutrients, is planned in several years and therefore the importance of research has increased.

A Study on the Qualitative Characteristics of Non-Regulated Organic Pollutants in Municipal Wastewater (하수성분중 비규제대상 유기오염물질의 정성적 특성에 관한 연구)

  • Shin, Jinhwan;Jeoung, Youngdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2007
  • The paper presents results of qualitative analysis of non-regulated organic pollutants in municipal wastewater and treated municipal wastewater with flocculation, ozone and UV process using GC-MS. The majority of the pollutants in the influent of the municipal wastewater treatment facility were either food related or due to the diffuse discharge from products used both in households and in industry. In the case of biological treatment process removed some organic pollutants effectively. But some organic pollutants were not removed with biological treatment. Thus, additional steps to improve the quality of effluent municipal wastewater will require a more rigorous control of consumer products used in household and municipal wastewater process using advanced treatment processs. The obtained data contributed to the evaluation of pollutants discharges to the ecosystem as well as to the characterization of pollution sources in the basin.

  • PDF

Simulations of a System Dynamics Model for Operations and Maintenance of Activated-Sludge Wastewater Treatment Plants (활성슬러지 하수처리시설 운영 및 유지관리를 위한 시스템다이내믹스 모델의 모의에 관한 연구)

  • Park, Suwan;Kim, Bong Jae;Jun, Hwan Don;Kim, In Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.905-912
    • /
    • 2006
  • In this paper, simulation methods of the system dynamics model developed by Das et al. (1997) for activated-sludge wastewater treatment plants are illustrated in an attempt to determine the operating rules and the policies related to capacity expansion of an activated-sludge wastewater treatment plant. For existing conditions, the analyses were performed by varying activated-sludge return rate to observe changes in effluent water quality and treatment efficiency. The effluent water quality is also analyzed for various average daily inflow conditions and activated-sludge return rates. As a result, without expanding the aeration tank, maximum average daily inflow that can satisfy the effluent water quality standard of BOD $0.02kg/m^3$ was determined as $2,840m^3/hr$, subject to 100% of activated-sludge return rate while other factors remain constant. When the activated-sludge return rate is less than 100%, expansion of the aeration tank is necessary and minimum sizes of the aeration tank to satisfy the effluent water quality standard were determined for various activated-sludge return rates. In addition, the total operating and maintenance as well as unit treatment cost regression equations for activated-sludge wastewater treatment plants are suggested by using the cost data that are obtained from Water and Wastewater Division, Ministry of Environment. The regression analyses showed that the economies of scale phenomena exist in the operating and maintenance costs of activated-sludge wastewater treatment plants.

Sensor State Isolation for Wastewater Based on Influent Characteristics Methodology (물질수지분석을 이용한 하수처리장 유입수질 측정 센서의 상태 진단)

  • Baek Jiwon;Kim Jongrack;You Kwangtae;Kim Yejin
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.4
    • /
    • pp.168-178
    • /
    • 2024
  • Wastewater treatment plants are constantly exposed to influent wastewater that is constantly changing. This poses a major challenge to the operation of the plants. It is crucial to have a rapid and accurate measurement of the influent concentrations of wastewater in order to maintain and optimize treatment performance, as well as to develop energy-saving strategies. While laboratory measurements provide the highest accuracy in determining influent water quality, they are inevitably time-consuming procedures. In order to cope with the ongoing disturbances from wastewater influent, absorption-based optical measuring instruments have been developed. These instruments can detect the influent water quality in a short amount of time, improving their practicality and reliability. However, when these optical measuring instruments malfunction, the accuracy of the measured values decreases, leading to unreasonable operation of the treatment plant. This paper proposes a method for detecting anomalies in optical water quality measurement devices. The Harmony Search algorithm is used to validate the measured water quality values and detect abnormalities such as contamination or physical anomalies in the measurement apparatus. To assess the performance of the developed algorithm in detecting anomalies, validation was conducted by installing it in a field-scale wastewater treatment plant. The results consistently showed that the developed fault detection method for optical water quality measurements equipment provided acceptable results for normal, temporary abnormal, and long-term abnormal conditions.