• 제목/요약/키워드: paper surface strength

검색결과 1,007건 처리시간 0.029초

콘크리트 충진 유리섬유 복합소재 튜브 합성압축부재의 구조적 특성분석 (Structural Characteristics of Concrete Filled Glass Fiber Reinforced Composite Tube)

  • 이성우;박신전;최석환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.571-574
    • /
    • 1999
  • Due to many advantages of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member si studied. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface. Thus it can be anticipated that increased strength of concrete will be incorporated in the design of composite compression member.

  • PDF

자동차용 강판의 물성 데이터베이스 (Database of Steel Sheet for Automotive body)

  • 박현철;이상곤;신철수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1483-1486
    • /
    • 2004
  • Purpose of this paper is to accummulate database of automotive steel sheet from mild steel to high strength steel in cold rolled steel sheets. Physical properties, mainly mechanical properties, of steel sheet are tested and all data are arranged to one sheet. Methods of test are composed of FLD, tensile strength test, chemical composition, surface roughness and product conditions. Finally this database will be helpful to automotive body designers and die designers to design automotive body parts and tools in a material point of view.

  • PDF

분말단조에 의한 베벨기어의 성형 기술 연구 (Development of Bevel Gear by Powder Forging Process)

  • 이정만
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.258-267
    • /
    • 1997
  • The powder forging process is an attractive manufacturing route for bevel gears. It offers beneficial material utilization and the minimization of finishing operations over that of conventional hot forging. The paper describes the process conditions for the powder forging of bevel gear, for example, powder alloy design, preform design, deformation of sintered preform, forging processes. The characteristics of prototype gear are investigated with microstructure, the density distribution, surface roughness of tooth, bending strength test of tooth, etc. The results of the bending strength test may prove the mechanical properties of powder forged gear.

  • PDF

고지재생연구(제14조) -고온압착건조처리 골판지 원지의 강도에 미치는 양성 PAM과 미세분의 영향- (Recycling of Wastepaper(XIV) -The Effect of Amphoteric PAM and Fines on the Dry Strength Properties of Condebelt Press Dried Linerboards-)

  • 최병수;윤혜정;류정용;신종호;송봉근
    • 펄프종이기술
    • /
    • 제33권2호
    • /
    • pp.24-31
    • /
    • 2001
  • As a novel method to improve strength properties of recycled test liner, Condebelt press drying system was introduced and adopted into Korea. New press drying treatment could enhance the surface and strength properties in accordance with the increase of sheet density. However, Condebelt drying can not increase the density of repeatedly recycled test liner as much as that of virgin UKP and at the same density condition, the strength of Condebelt press dried UKP is greater than that of press dried test liner. In order to increase the strength of test liner, two attempts were tried in this study. First, addition of polyelectrolytes, dry strength agent was investigated with a view to promote the fiber bonding potential of reclaimed corrugated container pulp. Second, blending effect of fines were analyzed in an aims of increasing density and strength of test liner. The results were as follows; Even in the case of test liner densified by Condebelt press dryer, addition of amphoteric PAM as a dry strength agent was effective in increasing strength properties and so the effect of dry strength agent on improving bonding potential of recycled OCC fiber could be confirmed. As an appropriate addition level of amphoteric PAM, below 1% based on dry pulp weight was suggested. Different from virgin UKP, density of recycled test liner can be increased by the blending of OCC fines and strength properties also can be improved. However, excessive blending of OCC fines could result in decreasing of density and serious weakening of test liner. The best blending ration of fines in test liner can be determined as about 30%. Taking into account the fines content in general OCC pulp as 50%, excessive 20% of fines were supposed to be fractionated and removed in order to achieve the best strength of Condebelt press dried test liner.

  • PDF

접착강화제가 치아경조직과의 접착강도 변화에 미치는 영향에 관한 연구 (A STUDY ON THE EFFECT OF DENTIN BONDING AGENTS APPLIED OVER ENAMEL ABOUT THE BOND STRENGTH OF COMPOSITE RESIN)

  • 최웅대;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.1-16
    • /
    • 1995
  • The purpose of this study was to investigate the effect of dentin bonding agents on the bond strength of composite resin restorations in case of applying the dentin bonding agents to acid etched enamel surfaces. Freshly extracted 364 bovine anterior teeth were selected as a adherents. 320 enamel specimens were divided into two groups(unetched group (1) and etched group (2) for testing the shear bond strength, 40 specimens were used for the hardness testing, and 4 specimens of rest were to observe the resin-tag formation into etched enamel surfaces. All surfaces of enamel specimens were polished with 320~1500 SiC paper under continuous running water. In Group (1), 100 enamel specimens were polished and unetched. 220 polished enamel specimens in Group (2) were etched with 37 % phosphoric acid solution for 60 seconds, washed with water for 20 seconds, and dried with a light air pressure for 60 seconds. Three kinds of dentin bonding agents(Gluma, Prisma, Scotchbond 2) were evaluated the effect on the bond strength to conditioned enamel surfaces. Shear bond strengths were measured on the three cases such as a coating of primer only, a coating of sealer only, and a sequential coating of primer and sealer to acid etched enamel surfaces were compared with the bond strengths measured by the coating of enamel bonding agent followed by the bonding of composite resin (Photo clearfil bright, Kuraray, Japan) to unetched and acid etched enamel surfaces. In addition, the hardness tested on the adhesive fractured surface between composite resin enamel as a mean of evaluation of a factor whether the mechanical bond strengths were affected and the penetration of dentin bonding agents into etched enamel surfaces was also observed. Bond strengths were measured using the method of shear bond strength by a universal testing machine (Instron-4467, USA), statistical test were applied to the results using a one way analysis variance(ANOVA), and hardness was measured by the Vicker's Hardness Tester(MHT-i, Matsuzawa, Japan) and the penetration of the resins were observed by the SEM (Hitachi, S-2300, Japan). The following conclusions were drawn; 1. Enamel bonding agent showed to affect the improvement of bond strength of composite resin to enamel surface both unetched and etched. 2. Dentin bonding agents could be resulted in increase of bond strength to unetched enamel surface, but there were no statistical significances. 3. Bond strengths to etched enamel surface were significantly decreased with a coating of dentin primer only. 4. Coating of sealer only and coating of primer and sealer noticed the similar bond strengths of composite resin to etched enamel using the enamel bonding agents. 5. The applying method proved to be more effective than the kinds of dentin bonding agents on the bond strength of composite resin to etched enamel than the kind of dentin. 6. Vicker's hardness numbers of dentin bonding agents were lower than that of composite resin, but the degree of penetration of dentin bonding agents into etched enamel surfaces was excellent.

  • PDF

양이온성 자일란의 Hw-BKP에의 흡착특성과 이에 따른 종이 물성 변화 (Adsorption of cationic birchwood xylan on Hw-BKP and its effect on paper properties)

  • 이상훈;이학래;윤혜정
    • 펄프종이기술
    • /
    • 제42권2호
    • /
    • pp.1-11
    • /
    • 2010
  • The possibility of applying birchwood xylan in papermaking process to improve dry strength of paper was investigated. Unmodified xylan barely adsorbed onto pulp fibers while cationically modified xylan adsorbed substantially. Adsorption of cationically modified xylan by quaternarization with 3-chloro-2-hydroxypropy trimethylammonium chloride improved dry strength of paper. Chemical structure and degree of substitution of the cationically modified xylan was determined by 400 MHz 13CNMR spectroscopy and elemental analyzer. The amount of adsorbed xylan on cellulose fibers was greater when the cationicity was moderate, and it was interpreted that the conformation of this cationic xylan adsorbed on fiber surface was more favorable for greater adsorption due to its greater loop formation tendency while highly cationic xylan tends to adsorbed in stretched conformation. The physical properties of handsheets increased as the amount of adsorbed cationic xylan increased. On the other hands, the optical properties decreased with xylan adsorption.

반도전성 실리콘 고무의 플라즈마 표면처리에 따른 접착특성과 절연성능 (Adhesion and Electrical Performance by Plasma Treatment of Semiconductive Silicone Rubber)

  • 황선묵;이기택;홍주일;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.450-456
    • /
    • 2005
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and Surface Roughness Tester. Adhesion was obtained from T-peel tests of semiconductive layer haying different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the creation of O-H and C=O. It is observed that adhesion performance was determined by surface energy and roughness level of silicone surface. It is found that at dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

자동차용 강판의 표면 텍스처링 효과에 따른 고성형성 연구 (Analysis of the High Formability of Automotive Steel Sheets by the Surface Texturing Effect)

  • 윤승채;여인웅;조민행
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.8-12
    • /
    • 2012
  • This study aims to analyze the formability property of surface texturing processed automotive steel sheet for improving the sheet forming property. In the paper, the effect of cavities fabricated using the laser surface texturing technique on automotive high strength steel sheets was studied. The frictional behavior of the sheet drawing is a function of interface parameters such as sheet surface roughness, holding force, contact pressure, etc. For these reasons, automotive steel researchers want to optimize the surface topography of automotive steel sheets in order to enhance the formability. Therefore, this study presents the behavior of deformation of a laser surface texturing steel sheet by considering the frictional operation during the deep drawing process.

무세척 고분자전해질 다층흡착 처리된 중질탄산칼슘이 종이의 품질에 미치는 영향 (Effect of Ground Calcium Carbonate Modified by Washless Multilayering of Polyelectrolytes on Paper Quality)

  • 이제곤;임완희;심규정;이학래;윤혜정
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.115-126
    • /
    • 2015
  • In this study, we investigated influence of ground calcium carbonate (GCC) modified by washless multilayering of polyelectrolytes on paper quality. Three layers of polyelectrolytes (cationic starch/anionic polyacrylamide/cationic starch) were formed on the surface of GCC using laboratory inline washless polyelectrolytes multilayering system, which was called inline LbL GCC. Base papers were prepared with untreated GCC or inline LbL GCC using a laboratory handsheet former. These handsheets were coated with rod coater, and then printed by black ink. Properties of base paper and fold crack of coated paper were evaluated. Base paper with inline LbL GCC showed much higher mechanical strength in terms of tensile index, strain, internal bond strength, and folding endurance. The fold crack of coated paper with inline LbL GCC occurred more frequently compared to coated paper with untreated GCC. This might be due to highly improved internal bond strength of base paper, which resulted in smaller delamination that played a role of stress dissipation. It would be recommended to design a proper coating layer in order to prevent fold crack.

Improvement of Interfacial Performances on Insulating and Semi-conducting Silicone Polymer Joint by Plasma-treatment

  • Lee, Ki-Taek;Huh, Chang-Su
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.16-20
    • /
    • 2006
  • In this paper, we investigated the effects of short-term oxygen plasma treatment of semiconducting silicone layer to improve interfacial performances in joints prepared with a insulating silicone materials. Surface characterizations were assessed using contact angle measurement and x-ray photoelectron spectroscopy (XPS), and then adhesion level and electrical performance were evaluated through T-peel tests and electrical breakdown voltage tests of treated semi-conductive and insulating joints. Plasma exposure mainly increased the polar component of surface energy from $0.21\;dyne/cm^2$ to $47\;dyne/cm^2$ with increasing plasma treatment time and then leveled off. Based on XPS analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and COH on semi-conductive silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiO_x,\;x=3{\sim}4$). The oxygen plasma treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength. In addition, electrical breakdown level of joints with adequate plasma treatment was increased by about $10\;\%$ with model samples of joints prepared with a semi-conducting/ insulating silicone polymer after applied to interface.