Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.1.008

Analysis of the High Formability of Automotive Steel Sheets by the Surface Texturing Effect  

Yoon, Seung-Chae (Research and Development Center, Hyundai HYSCO)
Lyo, In-Woong (Research and Development Division, Hyundai and Kia Corporate)
Cho, Min-Haeng (Dept. of Mechanical Engineering, Chung Ang University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.1, 2012 , pp. 8-12 More about this Journal
Abstract
This study aims to analyze the formability property of surface texturing processed automotive steel sheet for improving the sheet forming property. In the paper, the effect of cavities fabricated using the laser surface texturing technique on automotive high strength steel sheets was studied. The frictional behavior of the sheet drawing is a function of interface parameters such as sheet surface roughness, holding force, contact pressure, etc. For these reasons, automotive steel researchers want to optimize the surface topography of automotive steel sheets in order to enhance the formability. Therefore, this study presents the behavior of deformation of a laser surface texturing steel sheet by considering the frictional operation during the deep drawing process.
Keywords
metals; drawing; mechanical properties; computer simulition; laser surface texturing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Bayraktar, N. Isac, and G. Arnold, J. Mater. Pro. Tech. 162, 471 (2005).
2 A. Perlade, O. Bouaziz, and Q. Furnemont, Mater. Sci. Eng. A 356, 145 (2003).
3 S. Y. Han, S. Y. Shin, S. H. Lee, N. J. Kim, J. H. Kwak, and K. G. Chin, Kor. J. Met. Mater. 48, 235 (2010).
4 O. Bouaziz and N. Guelton, Mater. Sci. Eng. A 391, 246 (2001).
5 S. Vercammen, B. Blanpain, B. C. De Cooman, and P. Wollants, Acta Mater. 52, 2005 (2004).
6 R. Rana, W. Bleck, S. B. Singh, and O. N. Mohanty, Mater. Lett. 61, 2919 (2007)
7 K. T. Park, G. S. Kim, S. K. Kim, S. W. Lee, and S. W. Hwang, Met. Mater. Inter. 16, 1 (2010).
8 S. P. Keeler, J. Mater. Pro. Tech. 46, 443 (1994).
9 M. Merklein and J. Lechler, J. Mater. Pro. Tech. 177, 452 (2006).
10 I. A. Choudhury, O. H. Lai, and L. T. Wong, Simul. Model. Pract. Theory 14, 71 (2006).
11 A. A. Voevodin and J. S. Zabinski, Wear 261, 1285 (2006).
12 A. Borghi, E. Gualtieri, D. Marchetto, L. Moretti, and S. Valeri, Wear 265, 1046 (2008).
13 P. Andersson, J. Korkinen, S. Varjus, Y. Gerbig, H. Haefke, S. Georgiou, B. Zhmud, and W. Buss, Wear 262, 369 (2007).
14 U. Sellgren, S. Bjorklund, and S. Andersson, Wear 254, 1180 (2003).
15 G. Ryk and I. Etsion, Wear 261, 792 (2006).
16 I. Etsion and E. Sher, Tribol. Inter. 42, 542 (2009).
17 L. Rapoport, A. Moshkovich, V. Perfilyev, A. Gedanken, Y. Koltypin, E. Sominski, G. Halperin, and I. Etsion, Wear 267, 1203 (2009).
18 R. K. Verma and S. Chandra, J. Mater. Pro. Tech. 172, 218 (2006).
19 D. E. Dieter, Mechanical Metallurgy (1976).
20 T. S. Yang, Tribol. Inter. 43, 1104 (2010).
21 N. S. Kim and H. C. Kim, Plasticity and analysis (2002).