• 제목/요약/키워드: paper crane

검색결과 581건 처리시간 0.023초

풍동실험에 의한 갠트리 크레인의 풍력계수 산출과 구조 해석 (Wind Force Coefficients Computation of Gantry Crane by Wind Tunnel Experiment and Structural Analysis of the Crane)

  • 이재환;김태완;장인권;한순흥
    • 대한조선학회논문집
    • /
    • 제48권2호
    • /
    • pp.165-170
    • /
    • 2011
  • In this paper, wind force coefficient by wind tunnel experiment is obtained to compute the accurate wind force of the gantry crane model to be used for mobile harbor ship. The first crane model was tested under 20, 30, 40, 52m/s, partially 58m/s and the wind force coefficient is about 2.0 which is very close to the suggested theoretical value. The other is the more reliable crane model and tested under 20, 30, 40m/s also giving the similar realistic wind force coefficient. Also structural analysis of crane model was performed giving the reliable stress level. Since the rolling effect is important for mobile harbor ship, the safety of the crane on the ship needs to be guaranteed. For this, using the computed reaction forces, a tie-down design is suggested which connects the crane and ship to resist the turnover motion of the crane.

철송 크레인 일정계획문제에 관한 연구 (A Study on Rail Crane Scheduling Problem at Rail Terminal)

  • 김광태;김경민;김동희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.269-276
    • /
    • 2011
  • This paper considers the rail crane scheduling problem with minimizing the sum of the range of order completion time and make-span of rail crane simultaneously. The range of order completion time implies the difference between the maximum of completion time and minimum of start time. Make-span refers to the time when all the tasks are completed. At a rail terminal, logistics companies wish to concentrate on their task of loading and unloading container on/from rail freight train at a time in order to increase the efficiency of their equipment such as reach stacker. In other words, they want to reduce the range of their order completion time. As a part of efforts to meet the needs, the crane schedule is rearranged based on worker's experience. We formulate the problem as a mixed integer program. To validate the effectiveness of the model, computational experiments were conducted using a set of data randomly generated.

  • PDF

Anti-Sway Control of Container Cranes;Inclinometer, Observers, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1365-1370
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and its maintenance is easy. However, it gives almost the same performance. Various observers for estimating the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of the rail-mounted quayside crane is constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the pilot crane constructed. Experimental results are provided.

  • PDF

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

불확실성 요소를 갖는 3D 크레인 시스템의 강인적응제어 (Robust Adaptive Control of 3D Crane Systems with Uncertainty)

  • 정상철;김동원;이형기;조현철
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.102-108
    • /
    • 2008
  • This paper presents robust and adaptive control method for complicated three dimensional crane systems with uncertain effect. We consider an overhead crane system in which a trolly located on its top is moved to x- and y-axis independently. We first approximate the complicated crane model through linearization approach to simply construct a PD control and then design an adaptive control system for compensating modeling error and control deviation which is feasibly occurred due to system perturbation in practice. An adaptive control scheme is analytically derived using Lyapunov stability theory for a given bound of system perturbation. We accomplish numerical simulation for evaluation of the proposed control system and demonstrate its superiority comparing with the traditional control strategy.

하이브리드 방식을 이용한 크레인의 안티스웨이 제어 (Anti-sway Control of Crane System using Hybrid Control Method)

  • 박흥수;박준형;이동훈;김상봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.559-562
    • /
    • 1995
  • In the crane control system, it is reguired that the travelling time of the crane must be reduced as much as possible and the swing must be stoped at the end point. In paper, we present a hybrid control method which include the optimal regulator and velocity pattern controller in order to make high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the liner time invariant state equation can be obtained. In order to experiment the crane control, we consider 1 over 10 of the gantry crane which is used in a port. As a result, the hybrid control method improve efficient anti-sway control more than conventional velocity pattern control. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF

하역생산성 향상을 위한 컨테이너 크레인의 제어기 설계 (Design of Container Crane Controller for High Productivity in Cargo Handling)

  • 최재준
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.28-35
    • /
    • 2000
  • For the merit of a container in transportation and cargo handling the amount of container freight has been continuously on the increase. On the other hand container crane had got the bottle neck in cargo handling due to low productivity so that freight congestion had been often occurred at ports. in this paper A mathematical model for container crane system is represented a method for designing a fuzzy controller of container crane system for high productivity in cargo handling is presented. The fuzzy controller is compared with other optimal controller at the same condition. in the computer simulation the fuzzy controller obtained an excellent response to reference change better than the optimal controller. For disturbance such as a strong storm and parameter change due to change of cargo weight the result was also stable and robust than the optimal controller.

  • PDF

동적 신경회로망을 이용한 비선형 크레인 시스템의 위치제어 (Position Control of Nonlinear Crane Systems using Dynamic Neural Network)

  • 한승훈;조현철;이권순
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.966-972
    • /
    • 2007
  • This paper presents position control of nonlinear three-dimensional crane systems using neural network approach. Such crane system generally includes very complicated characteristic dynamics and mechanical framework such that its mathematical model is expressed by strong nonlinearity. This leads difficulty in control design for the systems. We linearize the nonlinear system model to construct PID control applying well-known linear control theory and then neural network is utilized to compensate system perturbation due to linearization. Thus, control input of the crane system is composed of nominal PID and neural output signals respectively. Our method illustrates simple design procedure, but system perturbation and modelling error are overcome through a neural compensator. As well. adaptive neural control is constructed from online learning. Computer simulation demonstrates our control approach is superior to the classic control systems.

마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석 (Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling)

  • 박원석;옥승용
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.

컨테이너 크레인의 CMS에 관한 연구 (A Study of Crane Monitoring System for Container Crane)

  • 김영호;손정기;정동호;배종일;이권순;이만형
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.145-151
    • /
    • 1998
  • This paper is aimed to handle quick work for all the workers and to improve the productivity by adding more effective content in Crane Monitoring System. This contributing proportion of the increase of port productivity is more increasing concerning not only the port industry, but also all the informations of container crane which is the representative equipment by the rapid increase of the volume of freight of port. The basic of rapid service is the improvement of the productivity, the information of operation as to the productivity of crane for the quick handling within yard and especially the informations of breakdown and to handle breakdown as soon as possible has a greate effect on the increase of productivity.

  • PDF