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1. INTRODUCTION 

 The crane system, which transports a big object to certain 
place, is widely used in industrial field. As the industrial 
structure has grown and the higher work efficiency has been 
required, more improved crane system, which can transfer the 
object fast, has been needed. Especially in a harbor container 
crane system, the necessity is more important. The focus of 
harbor loading and unloading process is minimizing the 
moving time of container. However, if the velocity of 
container is increased in order to decrease the working time, 
the vibration of crane cable is generated in a loading/unloading 
process. This vibration makes some problems. We cannot 
achieve precise position of container and the working time is 
delayed. As a result, many research interested in searching 
methods that will eliminate the vibration of cable has been 
performed.
 In former papers, various methods for a suppressing the 
sway of crane cable is investigated. There are generally two 
methods. One is the control method that reduces the sway of 
cable with a trolley velocity pattern as a control input shape. 
With the sway equation of motion of a linearized crane model, 
a sway feature for a specific velocity pattern is shown, and 
then a valuable velocity pattern is derived. Various results for 
certain velocity patterns are given in much paper, and the 
result is good.. However, in this case, the model is not realistic. 
A real crane cable has flexibility. A real crane has long cables, 
huge containers and the disturbance like wind may be lead to 
flexible deformation of crane cable. Then we must consider 
the flexibility of crane cable. 
 In contrast with this method, the other is using the function 
like energy. This method is usually used in case that the crane 
cable is considered as a flexible string, not a rigid pendulum. 
With a stabilizing theory using the Lyapunov’s method, the 
control law through the trolley motion is designed. But this 
method can not guarantee the fast trolley moving because this 
method is only related to the Lyapunov function candidate like 
an energy function. 
 For this reason, in this paper we propose a new control 
method which picks up the advantageous of two methods 
mentioned before. When a trolley moves fast, the sway due to 
the disturbance may be negligible because of a big system size 

and container mass. In this case, the vibration is also 
negligible and the system can be regarded a rigid pendulum. 
And in a dissipating vibration portion there is no trolley 
moving. Then the influence of elastic deformation and control 
law reflect this must be considered. Moreover, when the 
trolley finishes the motion, the actuator operates to suppress 
the residual vibration. This control law is investigated 
following.
 This paper is structured as follows: In Section 2, the 
equations of motion of flexible crane cable are derived by 
using the Hamilton’s principle. And path planning and 
two-stage control strategies are investigated with the 
nonflexible crane model. In Section 3, the time-optimal 
control for the fast trolley moving is investigated. In Section 4, 
a stabilizing boundary control law that suppresses the 
vibration of crane cable is derived. Finally, conclusions are 
stated in Section 5. 

2. SYSTEM CONTROL PROBLEM 

FORMULATION 

2.1 System modeling 

In many papers, the cable of container crane was modeled 
as nonflexible one shown in Fig.1 and Table 1. That is like a 
general pendulum. The following equations are used as 
nonflexible model (cable length is constant) [10]: 
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If we consider the variation of cable length, Eq. (3) may be 
changed as following. 
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Note that if 0l , )(t  become small and if 0l , )(t

become large. 
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Fig. 1 A schematic diagram of the container crane (nonflexible 
model).

Table 1 Definitions of the variables. 

Variables Definition Unit 

1b 2
11 rd kg/sec 

2b 2
22 rd kg/sec 

1d
1

2
1 br , trolley damping  sec/2kgm

2d
2

2
2 br , hoist damping  sec/2kgm

1F  = F traction force of the trolley,  N

2F traction force of the hoist,  N

g Acceleration of gravity (9.81) 2sec/m

1J equivalent mass moment of 
inertia of the trolley drive  

2kgm

2J equivalent mass moment of 
inertia of the hoist drive  

2kgm

l rope length, 2/22rl m

1m equivalent mass of the trolley 
drive,  

kg

2m equivalent mass of the hoist 
drive,  

kg

Lm mass of a container including 
the spreader  

kg

Tm mass of trolley  kg

m m = 1m  + Tm kg

1n trolley motor gear ratio   

2n hoist motor gear ratio   

1r radius of trolley drum  m

2r radius of hoist drum  m

1T input torque at trolley drum,  mN

2T input torque at hoist drum,  mN

hT input torque of hoist motor  mN

tT input torque of trolley motor mN

x
trolley displacement, 

11rx m

sway angle of the container rad

1
angular displacement of the 
trolley drum 

rad

2
angular displacement of the 
hoist drum  

rad

 But in real container crane system, we can not neglect the 
flexibility of the cable easily. Because of the length of cable 
and the size of container, we have to consider the influence of 
disturbance like wind. However, during the fast trolley moving, 
the effect of disturbance is negligible. So we consider the 
system as nonflexible model in section of fast trolley moving, 
and in section of suppressing the residual vibration we 
consider the system as flexible model. 
 Fig. 2 shows a schematic diagram of the container crane 
considered as a flexible cable system. The cable is considered 
as an inextensible and vertically translating string of mass per 

unit length  with constant length l . We make assumption 

that the motion of cable in two dimensional plane. The 
difference of this modeling with other paper is using partial 
differential equation. In this paper, we consider that the cable 
length is constant and suppressing the vibration started after 

the trolley located at the desired position. Let t  be the time, 

y  be the spatial coordinate along the longitude of motion, 

and ),( tyP  be the tension caused by payload and mass of 

cable. ),( tyw  is the transversal displacement of the strip at 

spatial coordinate y  and time t . And we suggest the 

actuator which is located under the trolley. This actuator is 

drived independently. So in Fig. 2, ay  is the actuator 

location.  
 Now, to derive the equation of motion, extended Hamilton’s 
principle is used: 
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where T  is the kinetic energy, V  is the potential energy (in 

this case, strain energy) and W is the virtual work done by the 

control force )(tFc . The tension of cable ),( tyP  is 

gylmtyP l )(),(  (6) 

where lm  is the mass of the payload and g is the 

gravitational acceleration.  
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Fig. 2 A schematic diagram of the container crane (flexible 
model). 

 The kinetic energy of the cable, payload and actuator is 
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material derivative. In this situation, the cable length does not 

vary. It means that 
dt

dy
 is zero. So 

Dt

tyDw ),(
 is equal to 

t

tyw ),(
. am  is the mass of actuator. The first integral term 

is vibrational kinetic energy and other terms are translational 
kinetic energy due to transverse vibration of cable. The 
potential energy is 
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This potential energy is generated by the cable tension. y  is 

the strain and if the infinitesimal distance dy  is replaced by 

the infinitesimal length ds, the strain y  can be approximated 

as [13]: 

2

2

1
yy w . (9) 

The virtual work done by the control force and damping force 
is  

),(),(),()( tywtywdtywtFW aataac , (10) 

where )(tFc  is the control force. 

 The substitution of variation of Eqs. (7), (8) and (10) into 
Eq. (5) yields the governing equation as follows: 

  0),(),( yyyytt wtyPwtyPw , ayy . (11) 

The boundary conditions are 

0),0( tw , 0),(),(),( tlwtlPtlwm yttl  (12) 

and the internal condition is 
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 These results are similar to the result of [3] and [9]. In [3], 
the governing equation is equal, but the boundary condition is 
different. It is because of the difference of method which 

derives the equation. In [9], if we set 0 , 0  (it 

means that the length of cable is constant.) and 0ek (it

means that the end of cable is free.) of Eqs. (39)-(41) of [9], 
the results is same. The difference is that in this paper we 
consider the mass and the damping effect of actuator. In [9], 
the author did not consider that. Eq. (11) is partial differential 
equation expressing the transverse vibration. 
 Note that because of value of existing time-optimal control 
with nonflexible model, these governing equation, boundary 
condition and internal condition are to be used only to 
suppress the transverse vibration. 

2.2 Path planning

In Fig. 3, the working sequence of the load is shown. This 
sequence consists of five stages. The load is lifted up from the 

initial elevation 0h  to elevation 1h  in the upward 

movement A-B. The elevation 1h  is above possible obstacles 

in the vicinity. The maximum lifting speed maxmax l  is 

achieved at point B. The load is lifted up to elevation 2h

above any obstacles along the rest of path during the diagonal 
movement B-C. The trolley achieves its maximum speed at 
point C. The acceleration pattern during B-C is derived using 
the time-optimal control with zero sway terminal conditions. 
Along C-D, the trolley moves at its maximum speed. The 
maximum speed of the trolley is limited by mechanical 

components and not by electrical components. During the 
diagonal movement D-E, the trolley is decelerated from its 
maximum speed to zero while the load is set down to elevation 

3h . The maximum downward speed of the load is achieved at 

E. In this paper, the target position where the residual 

vibration is suppressed is 3h  because we assume the PDE 

model that the length of crane cable is constant. In a real 
situation, through E-F the container is lowered further down to 

the target height 4h .

2.3 Control strategy 

According to the path planned as previously stated, a 
two-stage control is proposed. Note that we do not consider 
the movement of load from A to B. In the movement from B to 
E, the first stage control is a time-optimal control with 
feedback adjustment for the purpose of fast moving of the 
trolley. The trolley and hoist systems are independently 
controlled and the nonflexible simplified Eqs. (1)-(3) are used 
as a plant model. The second stage control, after section D-E, 
is a residual sway control. For the suppression of the residual 
vibration after section D-E, a feedback control law using Eqs. 
(11)-(13) and Lyapunov’s method is proposed. 
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Fig. 3 Transportation sequence of the container. 
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Fig. 4 Trolley traveling control strategies. 

 Fig. 4 shows various control strategies for a given distance 

and rope length. dx  denotes the target position and minx

denotes the minimum distance needed to apply the 

time-optimal control. First, if the target distance dx  is 

smaller than the minimum distance minx  needed to apply the 

bang/bang control (Fig. 6c) or any velocity patterns in Fig. 
6(a)-(b), the nonlinear control strategy is directly applied from 
the start (#4).  Second, assume that the rope length is 
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constant, which is the case that the load is lifted up to 2h  and 

then the trolley begins to move. If there is no wind and the 

initial sway angle is sufficiently small, i.e. min0 , then an 

open loop time-optimal control is recommended (#1). Note 

that the minimal angle min  varies depending on the rope 

length. However, if the initial sway angle is too large, the open 
loop time-optimal control would not yield zero sway angle 
upon arrival at point C. Therefore, a modified time-optimal 
control with error feedback, which will be discussed in 
Section 3, is recommended (#2). If the rope length changes, 

like the diagonal movements B-C and D-E, Cl  and El

become the reference rope lengths for deriving the velocity 
patterns for acceleration and deceleration, respectively (#3). It 
is remarked that the assumption of constant rope length 

presumes that the trolley control begins at height 2h  in Fig. 

3. Compared with the case that the trolley starts to move at 

height 1h , the total traveling time gets longer if the trolley 

begins to move at height 2h . However, since the control law, 

if assuming the constant rope length, is so simple, this 
constant rope length strategy can be wisely adopted if the 
traveling time is not so important.

3. TROLLEY MOVING CONTROL: 

TIME-OPTIMAL CONTROL 

According to the path planned as previously stated, a 
two-stage control is proposed. Note that we do not consider 
the movement of load from A to B. In the movement from B to 
E, the first stage control is a time-optimal control with 
feedback adjustment for the purpose of fast moving of the 
trolley. The trolley and hoist systems are independently 
controlled and the nonflexible simplified Eqs. (1)-(3) are used 
as a plant model. The second stage control, after section D-E, 
is a residual sway control. For the suppression of the residual 
vibration after section D-E, a feedback control law using Eqs.  
(11)-(13) and Lyapunov’s method is proposed. 
 Fig. 5 shows various control strategies for a given distance 

and rope length. dx  denotes the target position and minx

denotes the minimum distance needed to apply the 

time-optimal control. First, if the target distance dx  is 

smaller than the minimum distance minx  needed to apply the 

bang/bang control (Fig. 6c) or any velocity patterns in Fig. 
6(a)-(b), the nonlinear control strategy is directly applied from 
the start (#4).  Second, assume that the rope length is 

constant, which is the case that the load is lifted up to 2h  and 

then the trolley begins to move. If there is no wind and the 

initial sway angle is sufficiently small, i.e. min0 , then an 

open loop time-optimal control is recommended (#1). Note 

that the minimal angle min  varies depending on the rope 

length. However, if the initial sway angle is too large, the open 
loop time-optimal control would not yield zero sway angle 
upon arrival at point C. Therefore, a modified time-optimal 
control with error feedback, which will be discussed in 
Section 3, is recommended (#2). If the rope length changes, 

like the diagonal movements B-C and D-E, Cl  and El

become the reference rope lengths for deriving the velocity 
patterns for acceleration and deceleration, respectively (#3). It 
is remarked that the assumption of constant rope length 

presumes that the trolley control begins at height 2h  in Fig. 

3. Compared with the case that the trolley starts to move at 

height 1h , the total traveling time gets longer if the trolley 

begins to move at height 2h . However, since the control law, 

if assuming the constant rope length, is so simple, this 
constant rope length strategy can be wisely adopted if the 
traveling time is not so important. 

4. BOUNDARY CONTROL LAW 

After the movement E-F in Fig. 3, the purpose of control is 
to dissipate the residual vibration of the crane cable. We define 
an energy-like (Lyapunov) function of time for container crane 

and denote it by )(tV .
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And we can rewrite Eq. (16) as follows 
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Because the mass of load is efficiently bigger than the mass of 

unit length of the cable, we replace the tension ),( tyP  to 

glmP lmax .
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Fig. 5 Block diagram of the trolley traveling control. 
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 Now, the total derivative (or the material derivative) of Eq.  

(17) is evaluated. The time derivative of ),( tyV  becomes 

t

y
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t
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t
tyV

dt

d
),(),(),(  (18) 

where v
t

y ~ , v~  is the speed of hoisting. But we consider 

0~v  condition. So Eq. (18) is 
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From Eqs. (11)-(13), the total derivative of Eq. (17) becomes 
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The displacement of the string is continuous at ayy :

),(),(),( tywtywtyw aaa . (21) 

Time derivative of Eq. (21) yields 
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By using Eq. (22) the following feedback control law will 
make Eq. (20) negative semi-definite. 

),()( tywKtF atc   (23) 

where lK0  is a constant real number. Eq. (21) is also 

similar to the result of [9]. If we set 0 (it means that the 

length of cable is constant.) of Eq. (52) in [9], the result is 
same. 

 Therefore, we can conclude that as we consider the 
container crane system Eqs. (11)-(13), the closed-loop system 
with the control law Eq. (23) is uniformly asymptotically stable.

5. CONCLUSIONS 

In this paper, the time-optimal control to reduce the sway of 
crane cable and boundary feedback control to eliminate the 
residual vibration are investigated. Because the fast trolley 
moving is the main purpose, the various velocity pattern of 
trolley, which gives the acceleration to minimize the sway 
during the trolley moving is given. After the trolley moving, 
the control law using the actuator in order to suppress the 
residual vibration is suggested. These control methods have 

advantages: minimizing the traveling time, reducing the 
residual vibration. But in this paper, we use two different 
models due to advantages of each model: nonflexible and 
flexible model. In a real working space, a flexible model is 
more realistic. And in the section E-F, there are no controls, 
because before section E-F the actuator suppresses the residual 
vibration. Because of the omission of the control in section 
E-F and the control method during the stoppage of hoisting, 
the working time may be longer. In a later research, at the 
section D-E and E-F in Fig. 3, the variation of length of crane 
cable will be considered as a flexible cable model. In this 
model, the same actuator investigated in this paper will control 
the sway and residual vibration of crane cable. This modeling 
method makes the motion of trolley not to be constraint in the 
velocity patterns mentioned in Section 3. Then we can design 
the crane system which has faster maximum speed of trolley. 
Next, using the flexible model (like a string) without using the 
nonflexible model (as a rigid pendulum) when we derive 
time-optimal control method with the velocity pattern, the 
control method using new velocity pattern without additional 
actuator will be derived. 
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