• 제목/요약/키워드: papaya

검색결과 66건 처리시간 0.022초

Effect of the Combination Hot Water - Calcium Chloride on the In Vitro Growth of Colletotrichum gloeosporioides and the Postharvest Quality of Infected Papaya

  • Ayon-Reyna, Lidia Elena;Lopez-Valenzuela, Jose Angel;Delgado-Vargas, Francisco;Lopez-Lopez, Martha Edith;Molina-Corral, Francisco Javier;Carrillo-Lopez, Armando;Vega-Garcia, Misael Odin
    • The Plant Pathology Journal
    • /
    • 제33권6호
    • /
    • pp.572-581
    • /
    • 2017
  • Anthracnose of papaya fruit caused by the fungus Colletotrichum gloeosporioides is one of the most economically important postharvest diseases. Hot water immersion (HW) and calcium chloride (Ca) treatments have been used to control papaya postharvest diseases; however, the effect of the combination HW-Ca on the pathogen growth and the development of the disease in infected papaya fruit has been scarcely studied. The aim of this study was to evaluate the effect of the HW-Ca treatment on the in vitro growth of C. gloesporioides conidia and the quality of infected papaya. In vitro, the HW-Ca treated conidia showed reduced mycelial growth and germination. In vivo, the HW-Ca treatment of infected papaya delayed for 5 days the onset of the anthracnose symptoms and improved the papaya postharvest quality. The combined treatment HW-Ca was better than any of the individual treatments to inhibit the in vitro development of C. gloeosporioides and to reduce the negative effects of papaya anthracnose.

Papaya: A gifted nutraceutical plant - a critical review of recent human health research

  • Karunamoorthi, Kaliyaperumal;Kim, Hyung-Min;Jegajeevanram, Kaliyaperumal;Xavier, Jerome;Vijayalakshmi, Jayaraman
    • 셀메드
    • /
    • 제4권1호
    • /
    • pp.2.1-2.17
    • /
    • 2014
  • The plant kingdom is considered to be a repository of modern medicine, attributable to their rich source of bio-active molecules and secondary metabolites. It is indeed the Nutraceuticals that enhance immunity and ensure a healthier life because of their prophylactic and therapeutic values. Over centuries, papaya [Caricaceae; (Carica papaya Linn.)] is a renowned nutritious and medicinal plant. Each part of the papaya like root, stem, leaf, flower, fruit, seed, rinds, and latex has its own nutraceutical properties. It serves as food, cooking aid, and Ethnomedicine to prevent and treat wide-range of diseases and disorders. It has also been traditionally used as appetite enhancer, meat tenderizer, purgative, medicinal acne, abortifacient and vermifuge. Over decades, a series of scientific attempts were made to authenticate the nutraceutical properties of papaya. These studies validated that the papaya has antiplasmodial, antitrichochramal, antitrichomonal, antidengue, and anti-cancer activities. They have also exhibited that papaya possesses antiseptic, antiparasitic, anti-inflammatory, antidiabetic, and contraceptive features, and it helps in the management of sickle-cell anaemia, HIV, heart diseases and digestional disorders too. Nevertheless, the responsible bio-active molecules and their mode of actions remain indistinct and imprecise, and this calls for further pharmacological and clinical research on them. Conclusively, papaya is one of the naturally gifted plants; though its nutraceutical properties as a food or as a quasi-drug are poorly understood or undervalued by people. Accordingly, this scrutiny, demand for instigation of public health awareness campaigns to promote papaya consumption, so that the society shall acquire optimal benefits of papaya and in turn prevent and alleviate various diseases and illness.

Butyrylcholinesterase Inhibitory Activity and GC-MS Analysis of Carica papaya Leaves

  • Khaw, Kooi-Yeong;Chear, Nelson Jeng Yeou;Maran, Sathiya;Yeong, Keng Yoon;Ong, Yong Sze;Goh, Bey Hing
    • Natural Product Sciences
    • /
    • 제26권2호
    • /
    • pp.165-170
    • /
    • 2020
  • Carica papaya is a medicinal and fruit plant owing biological activities including antioxidant, antiviral, antibacterial and anticancer. The present study aims to investigate the acetyl (AChE) and butyryl (BChE) cholinesterase inhibitory potentials of C. papaya extracts as well as their chemical compositions. The chemical composition of the active extract was identified using a gas chromatography-mass spectrometry (GC-MS). Ellman enzyme inhibition assay showed that the alkaloid-enriched leaf extract of C. papaya possessed significant anti-BChE activity with an enzyme inhibition of 75.9%. GC-MS analysis showed that the alkaloid extract composed mainly the carpaine (64.9%) - a major papaya alkaloid, and some minor constituents such as aliphatic hydrocarbons, terpenes and phenolics. Molecular docking of carpaine revealed that this molecule formed hydrogen bond and hydrophobic interactions with choline binding site and acyl pocket. This study provides some preliminary findings on the potential use of C. papaya leaf as an herbal supplement for the prevention and treatment of Alzheimer's disease.

RT-PCR을 이용한 유전자변형파파야(55-1)검사법 확립 및 파파야가공식품의 적용 연구 (Establishment and application of a qualitative real-time polymerase chain reaction method for detecting genetically modified papaya line 55-1 in papaya products)

  • 권유진;정소영;조경철;박지은;구은주;서동혁;김유진;황지현;박성수;최선옥;임철주
    • 분석과학
    • /
    • 제28권2호
    • /
    • pp.117-124
    • /
    • 2015
  • Genetically modified (GM) papaya line 55-1, which is resistant to PRSV infection, has been marketed globally. Prompt and sensitive protocols for specific detections are essential for the traceability of this line. Here, an event- and construct-specific real-time polymerase chain reaction (RT-PCR) method was established to detect 55-1. Qualitative detection was possible for fresh papaya fruit up to dilutions of 0.005% and 0.01% for the homozygous SunUp and heterozygous Rainbow cultivars, respectively, in non-GM papaya. The method was applied in the qualitative detection of 55-1 in eight types of commercially processed papaya products. Additionally, papaya products were monitored to distinguish GM papaya using the P35S and T-nos RT-PCR detection methods. As expected, detection capacity was improved via modified sample preparation and the established RT-PCR detection method. Taking these results together, it can be suggested that a suitable method for the extraction and purification of DNA from processed papaya products was established for the detection of GM papaya.

Anticancer activities of Papaya (Carica papaya): A Review

  • Parray, Zahoor ahmad;Parray, Shabir ahmad;Khan, Javed ahmad;Zohaib, Sharique;Nikhat, Shagufta
    • 셀메드
    • /
    • 제8권4호
    • /
    • pp.20.1-20.5
    • /
    • 2018
  • Cancer is considered one of the deadly diseases in the world. According to WHO cancer now causes more deaths than all coronary heart disease. The incidence and mortality of the worldwide major cancers are now available in the GLOBOCAN series of the International Agency for Research on Cancer. The transition of global demographic and epidemiologic shows that burden of cancer will increase particularly in low and middle income countries, with over 20 million new cancer cases expected annually as early as 2025. Medicinal plants made known to be prospective and useful job for the treatment of several diseases and disorders from prehistoric days to nowadays. One of the commonly used plants, which have supporting evidences from the recent scientific data for the different types of cancers, is Carica papaya. Papaya (Carica papaya) is widely used as folk caloric herbal medicine, being a powerhouse of nutrients and accessible throughout the year. It is a rich source of three powerful antioxidants, the minerals, vitamins and contains high content of fibre. Carica papaya has provided many remedies for various diseases from ancient days to nowadays, and is regarded as a Nutraceutical. Because of this comprehensive medicinal value of Carica papaya, we are trying here to convey the reports studied especially for the anticancer activities of the age-old fruit, which will help researchers to pull in concert data and may be a "lead" for the one of the dangerous disease in the world.

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • 제26권1호
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder

  • Varma V., Geetha;Misra, Anil Kumar
    • Membrane and Water Treatment
    • /
    • 제7권5호
    • /
    • pp.403-416
    • /
    • 2016
  • The possibility of using carica papaya leaf powder for removal of copper from wastewater as a low cost adsorbent was explored. Different parameters that affect the adsorption process like initial concentration of metal ion, time of contact, adsorbent quantity and pH were evaluated and the outcome of the study was tested using adsorption isotherm models. A maximum of 90%-94.1% copper removal was possible from wastewater having low concentration of the metal using papaya leaf powder under optimum conditions by conducting experimental studies. The biosorption of copper ion was influenced by pH and outcome of experimental results indicate the optimum pH as 7.0 for maximum copper removal. Copper distribution between the solid and liquid phases in batch studies was described by isotherms like Langmuir adsorption and Freundlich models. The adsorption process was better represented by the Freundlich isotherm model. The maximum adsorption capacity of copper was measured to be 24.51 mg/g through the Langmuir model. Pseudo-second order rate equation was better suited for the adsorption process. A dynamic mode study was also conducted to analyse the ability of papaya leaf powder to remove copper (II) ions from aqueous solution and the breakthrough curve was described by an S profile. Present study revealed that papaya leaf powder can be used for the removal of copper from the wastewater and low cost water treatment techniques can be developed using this adsorbent.

DETECTION OF FRUITS ON NATURAL BACKGROUND

  • Limsiroratana, Somchai;Ikeda, Yoshio;Morio, Yoshinari
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.279-286
    • /
    • 2000
  • The objective of this research is to detect the papaya fruits on tree in an orchard. The detection of papaya on natural background is difficult because colors of fruits and background such as leaves are similarly green. We cannot separate it from leaves by color information. Therefore, this research will use shape information instead. First, we detect an interested object by detecting its boundary using edge detection technique. However, the edge detection will detect every objects boundary in the image. Therefore, shape description technique will be used to describe which one is the interested object boundary. The good shape description should be invariant in scaling, rotating, and translating. The successful concept is to use Fourier series, which is called "Fourier Descriptors". Elliptic Fourier Descriptors can completely represent any shape, which is selected to describe the shape of papaya. From the edge detection image, it takes a long time to match every boundary directly. The pre-processing task will reduce non-papaya edge to speed up matching time. The deformable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.

  • PDF

Hybrid 'Sinta' Papaya Exhibits Unique ACC Synthase 1 cDNA Isoforms

  • Hidalgo, Marie-Sol P.;Tecson-Mendoza, Evelyn Mae;Laurena, Antonio C.;Botella, Jose Ramon
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.320-327
    • /
    • 2005
  • Five ripening-related ACC synthase cDNA isoforms were cloned from 80% ripe papaya cv. 'Sinta' by reverse transcription-PCR using gene-specific primers. Clone 2 had the longest transcript and contained all common exons and three alternative exons. Clones 3 and 4 contained common exons and one alternative exon each, while clone 1, the most common transcript, contained only the common exons. Clone 5 could be due to cloning artifacts and might not be a unique cDNA fragment. Thus, there are only four isoforms of ACC synthase mRNA. Southern blot analysis indicates that all five clones came from only one gene existing as a single copy in the 'Sinta' papaya genome. Multiple sequence alignment indicates that the four isoforms arise from a single gene, possibly through alternative splicing mechanisms. All the putative alternative exons were present at the 5'-end of the gene comprising the N-terminal region of the protein. 'Sinta' ACC synthase cDNAs were of the capacs 1 type and are most closely related to a 1.4 kb capacs 1-type DNA(AJ277160) from Eksotika papaya. No capacs 2-type cDNAs were cloned from 'Sinta' by RT-PCR. This is the first report of possible alternative splicing mechanism in ripening-related ACC synthase genes in hybrid papaya, possibly to modulate or fine-tune gene expression relevant to fruit ripening.

GM 파파야 개발 및 생물안전성 평가 연구 동향 (Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment)

  • 김호방;이이;김창기
    • Journal of Plant Biotechnology
    • /
    • 제45권3호
    • /
    • pp.171-182
    • /
    • 2018
  • 파파야는 열대와 아열대 지역에서 광범위하게 재배되고 있는 주요 작물 중의 하나이다. 파파야 열매는 칼로리가 낮고 비타민 A와 C, 미네랄이 풍부하며, 미숙과에는 단백질 분해 효소인 파파인이 풍부하여 의약품, 화장품, 식품 가공 산업 등에 널리 활용되고 있다. 전세계 파파야 산업에서 가장 중요한 제한 요인 중의 하나가 potyvirus에 속하는 papaya ringspot virus (PRSV)에 의해 야기되는 식물병이다. 1992년에 미국 연구자들에 의해 PRSV의 coat protein (cp) 유전자를 발현하는 최초의 PRSV-저항성 GM 파파야 이벤트($R_0$ '55-1')가 만들어졌으며, 1997년에는 이로부터 유래한 GM 품종('SunUp', 'Rainbow')에 대해 미국 정부가 상업적 재배를 승인하였다. 현재까지 GM 파파야 개발은 해충 저항성, 병 저항성(곰팡이, 바이러스), 수확 후 저장성 증대, 알루미늄과 제초제 저항성 등의 형질에 초점을 맞추어 왔다. 아울러 파파야를 동물단백질(백신 등) 생산을 위한 식물공장으로 활용하기 위한 시도도 이루어졌다. 현재, 미국과 중국을 비롯한 약 17개 국가에서 GM 파파야 개발과 포장 실험 또는 상업적 재배가 이루어지고 있다. GM 파파야의 개발과 더불어 생물안전성 평가 및 GM 판별 기술 개발에 관한 연구도 이루어지고 있다. 생물안전성 평가와 관련하여 주로 인체 위해성과 환경 위해성에 관한 분석이 수행되고 있다. 인체 위해성의 경우, 동물 모델을 대상으로 장기간 식이섭취를 통해 일반 및 유전 독성, 알레르기항원성, 면역 반응, GM 유래 단백질의 안정성에 관한 연구가 수행되었다. 환경 위해성의 경우, GM 재배가 토양 미생물 다양성에 미치는 영향, GM 유래 유전물질의 토양 잔류 및 토양 미생물로의 전이 여부에 관한 연구가 이루어졌다. 우리나라, 유럽 및 일본을 비롯한 많은 나라에서는 상업적 재배를 위한 GM 품종 도입이나, 파파야 가공 식품 제조에 비승인 GM 파파야의 사용을 규제하고 있다. 도입 유전자 특이적 또는 이벤트 특이적인 분자표지를 개발하고, PCR(일반, real-time) 또는 loop-mediated isothermal amplification 방법을 통해 GM 여부를 판별하고 있다. 파파야에 대한 초안 수준의 유전체 정보가 2008년에 해독되었으며, 최근에는 차세대 유전체 분석 기술로 확보된 유전체와 전사체 정보를 활용하여 GM 여부를 판별하는 기술도 확립되었다.