• 제목/요약/키워드: panel thickness

검색결과 560건 처리시간 0.025초

패널존과 점성감쇠기를 고려한 강골조 구조물의 내진 설계 모델 (Seismic Design of Steel Frame Model Considering the Panel Zone and Viscous Dampers)

  • 박순응;이택우
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.87-94
    • /
    • 2020
  • The present study is aimed to calculate the optimal damping according to the seismic load on the structure with a non-seismic design to perform structure analysis considering the deformation of structural joint connection and panel zone; to develop design program equipped with structural stability of the steel frame structures reinforced with the panel zone and viscous dampers, using the results of the analysis, in order to systematically integrate the seismic reinforcement of the non-seismic structures and the analysis and design of steel frame structures. The study results are as follows: When considering the deformation of the panel zone, the deformation has been reduced up to thickness of the panel double plate below twice the flange thickness, which indicates the effect of the double plate thickness on the panel zone, but the deformation showed uniform convergence when the ration is more than twice. The SMRPF system that was applied to this study determines the damping force and displacement by considering the panel zone to the joint connection and calculating the shear each floor for the seismic load at the same time. The result indicates that the competence of the damper is predictable that can secure seismic performance for the structures with non-seismic design without changing the cross-section of the members.

흡음형 방음벽의 성능향상에 관한 연구 (A Study on Performance Improvement of Sound Absorbing Noise Barrier)

  • 김현실;김재승;강현주;김봉기;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.849-854
    • /
    • 2001
  • A study on performance of the sound absorbing noise barrier is presented. Noise barrier of sound absorbing type is composed of the front panel, sound absorbing material, and back panel. For allowing sound path, front panel is usually perforated. The performance of the noise barrier is governed by the opening ratio of the perforated panel, sound absorption coefficient of the sound absorbing material. In this study, the effects of the opening ratio, diameter of the hole, thickness of the sound absorbing material are investigated. It is found that the thickness of the sound absorbing material must be at least 50 mm to ensure the required minimum NRC value 0.70, and the opening ratio is greater than 0.2. It is shown that the thickness of the back panel is crucial in providing required STL (Sound Transmission Loss) value. The performance of the developed noise barrier is measured, where its sound absorbing coefficient and sound transmission loss satisfy the criteria.

  • PDF

레이저 용접 테일러드 블랭크를 이용한 사이드 패널 성형 (Stamping of Side Panel Using the Laser Welded Tailored Blank)

  • 권재욱;명노훈;백승엽;인정제;이경돈
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.7-13
    • /
    • 1999
  • In this study, side panels were developed using the laser-welded tailored blank (T.B.) of both the same thickness and different thickness. At first, the formability of the same thickness T.B. was investigated to compare with one of the non-welded panel with respect to weldline movement and strain distribution in blank during the stamping process. Based on these results, we determined the weld line positions and the die step for T.B. forming of the blanks composed of different thickness combination. Then we made some stamping tryouts with selected types of blanks to investigate the formability of T.B. of the different thickness. During the tryouts, wrinkles were found in the a-pillar lower region which is under the deformation mode of the shrink flange. In the b-pillar region, fractures were also found. These defects have been reduced and corrected by controlling the blank design, the die faces and process parameters.

  • PDF

Characteristics of Surface Strand Orientation and Strand Mat Thickness Variation and Its Effect on the Bending Properties of Commercial OSB

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권2호
    • /
    • pp.56-62
    • /
    • 2008
  • The surface and edge structure of OSB is defined by surface strand orientation and strand mat thickness variation parallel to the length of the panel using video-microscope. The bending strength of OSB was correlated with surface strand orientation and decreased with increasing the orientation angle in the direction parallel to length of the panel. Average strand mat thickness variation parallel to the length of the panel did not influence the bending strength, but the bonding characteristics among the outermost strands affects the bending strength of OSB. Hankinson formula can be used to predicts the MOE according to strand orientation in the surface of OSB, and more precise strand alignment and reducing thickness variation should be important in the structural performance of OSB panels.

Tailored Blank를 이용한 Side Panel 성형 (Stamping of Side Panel Using the Tailored Blank)

  • 권재욱;명노훈;백승엽;인정제;이경돈;유순영;이영국
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.102-109
    • /
    • 1998
  • In this study, the side panels were developed using the laser-welded Tailored Blanks (TB) with both the same thickness and the different thickness. At first, the formability of the same thickness T.B was investigated to be compared with one of the non welded panel with respect to weldline movements and strain distribution on blank during the stamping. Based on these results, we selected candidates of T.B with different thickness for stamping experiments. That is, we determined the weld line positions and the die step. Then we made some stamping tryouts with selected types of blank designs to investigate the formability of T.B with different thickness. During the tryouts, the wrinkles were found in the a-pillar lower region which is under the deformation mode of the shrink flange. In the b-pillar region, the fractures were found also, these defects have been reduced and corrected by controlling the blank design and the die faces and process pamameters.

Physical and Mechanical Properties of Wood Fiber-Polypropylene Fiber Composite Panel

  • Kim, Jee-Woong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.36-46
    • /
    • 2001
  • This study was to find a way of reusing wood and plastic wastes, which considered as a troublesome problem to be solved in this age of mass production and consumption, in manufacturing wood fiber-polypropylene fiber composite panel. And the feasibility of this composite panel as a substitute for existing headliner base panel of automobile was also discussed, especially based on physical and mechanical performance. Nonwoven web composite panels were made from wood fiber and polypropylene fiber formulations of 50 : 50, 60 : 40, and 70 : 30, based on oven-dry weight, with densities of 0.4, 0.5, 0.6, and 0.7 g/$cm^3$. At the same density levels, control fiberboards were also manufactured for performance comparison with the composite panels. Their physical and mechanical properties were tested according to ASTM D 1037-93. To elucidate thickness swelling mechanism of composite panel through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. Test results in this study showed that nonwoven web composite panel from wood fibers and polypropylene fibers had superior physical and mechanical properties to control fiberboard. In the physical properties of composite panel, dimensional stability improved as the content of polypropylene fiber increased, and the formulation of wood fiber and polypropylene fiber was considered to be a significant factor in the physical properties. Water absorption decreased but thickness swelling slightly increased with the increase of panel density. In the mechanical properties of composite panel, the bending modulus of rupture (MOR) and modulus of elasticity (MOE) appeared to improve with the increase of panel density under all the tested conditions of dry, heated, and wet. The formulation of wood fiber and polypropylene fiber was considered not to be a significant factor in the mechanical properties. All the bending MOR values under the dry, heated, and wet conditions met the requirements in the existing headliner base panel of resin felt.

  • PDF

Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading

  • livani, Mostafa;MalekzadehFard, Keramat;Shokrollahi, Saeed
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.1-19
    • /
    • 2016
  • In this study, the supersonic panel flutter of doubly curved composite sandwich panels with variable thickness is considered under aerothermoelastic loading. Considering different radii of curvatures of the face sheets in this paper, the thickness of the core is a function of plane coordinates (x,y), which is unique. For the first time in the current model, the continuity conditions of the transverse shear stress, transverse normal stress and transverse normal stress gradient at the layer interfaces, as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are satisfied. The formulation is based on an enhanced higher order sandwich panel theory and the vertical displacement component of the face sheets is assumed as a quadratic one, while a cubic pattern is used for the in-plane displacement components of the face sheets and the all displacement components of the core. The formulation is based on the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear approximation, the one-dimensional Fourier equation of the heat conduction along the thickness direction, and the first-order piston theory. The equations of motion and boundary conditions are derived using the Hamilton principle and the results are validated by the latest results published in the literature.

FRP 보강 폴리머 모르터 패널의 역학적 특성 (Mechanical Properties of Polymer Mortar Panel Reinforced by FRP)

  • 유능환;연규석;김기성;이윤수;최동순
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.342-347
    • /
    • 1999
  • This study was initiated to develop a precast polymer concrete panel production method and to describe some engineering properties of FRP (Fiberglass Reinforced Plastics) reinforced polymer mortar. Specimens with different panel thickness and FRP reinforcement were prepared and tested and analyzed with respect to structural behaviors. Cracking moment was mostly affected by the thickness and reinforced FRP. Data of the study could be widely applied to the designing and planning of production processes of many polymer concrete products of which all or some of the components are composed with thin panels.

  • PDF

Deformational characteristics of a high-vacuum insulation panel

  • Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제10권3호
    • /
    • pp.245-262
    • /
    • 2000
  • The objective of this study is to analyze the deformational characteristics of a high-vacuum insulation panel that is evacuated to eliminate significant gas-phase conductance through its thickness. The panel is composed of a metal envelope and low thermal conductance spacers. The problem is very challenging because several nonlinearities are involved concurrently. Not only are various finite element models such as triangular, rectangular, beam and circular plate models used to simulate the panel, but also several finite element programs are used to solve the problem based on the characteristics of the finite element model. The numerical results indicate that the effect of the diameter of the spacer on the vertical deformation of the plate panel is negligibly small. The parameter that mainly influences the maximum sag is the spacing between the spacers. The maximum vertical deformation of the panel can be predicted for a practical range of the spacing between the spacers and the thickness of the plate. Compared with the numerical results obtained by the finite element models and the experimental tests, they have a good agreement. The results are represented in both tabular and graphical forms. In order to make the results useful, a curve fitting technique has been applied to predict the maximum deformation of the panel with various parameters. Moreover, the panel was suggested to be a "smart" structure based on thermal effect.

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.