• 제목/요약/키워드: panel thickness

검색결과 555건 처리시간 0.023초

판넬의 덴팅에 관한 연구 (A Study of Panel Denting)

  • 정동원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.610-615
    • /
    • 2001
  • In the interest of improved automotive fuel economy, one solution is reducing vehicle weight. Achieving significant weight reductions will normally require reducing the panel thickness or using alternative materials such as aluminum alloy sheet. These changes will affect the dent resistance of the panel. In this study, the correlation between panel size, curvature, thickness, material properties and dent resistance is investigated. A parametric approach is adopted, utilizing a "design software" tool incorporating empirical equations to predict denting and panel stiffness for simplified panels. The developed design program can be used to minimize panel thickness or compare different materials, while maintaining adequate panel performance.

  • PDF

새로 개발된 부상형 육묘에 있어서 스티로포움 판의 두께가 연초 묘 생육에 미치는 영향 (Influence of Thickness of Styrofoam-Panel on Tobacco Seedling Growth in Newly Developed Floating System)

  • 백기현;신승구;한종구;권구홍;김영신;이승철
    • 한국연초학회지
    • /
    • 제19권2호
    • /
    • pp.102-106
    • /
    • 1997
  • The inluence of styrofoam-panel thickness of floating frame on the seedling growth of flue-cured tobacco(Nicotiana tabacum L.) in the newly developed direct-seed float system was investigated . Floating frame used instead of styrofoam-tray consisted of styrofoam-panel (106×108cm) for floating, eight holes(1.Sx2S.0 cm) to uniform the water, and nutrition supply far seedling and water and nutrition absorption cloth placed on the styrofoam-panel. Each floating-frame may lay eight plastic-trays on it. Eight grades of styrofoam-panel thickness from 26 mm to 46mm and two kinds of media were used in the greenhouse system. Dry cells were found from the styrofoam-panel thickness of 43mm in carbonized chaff, compost and original soil rate of L3-3(v/v) media, and of 37mm in peat and perlite rate of 8-2(v/v) media. The thinner styrofoam-panel produced more tender and succulent seedling with the more trunk and the less root weight. When considering the appearance of dry cell, seedling growth, producing healthy tobacco seedlings, and utilization of styrofoam-panel for two kinds of medias the ideal styrofoam-panel thickness were suggested to be around 34mm for flue-cured tobacco reeling production in the newly developed direct-seeding float system. Key words : tobacco seedlings, float system, medium, styrofoam pannel, dry cell.

  • PDF

Theoretical Sensitivity of Warp to Varying Layer Thickness in 5-layer Plywood

  • Via, Brian K.;Wu, Q.;Hartley, Ian D.;Shupe, Todd F.;Lee, Sangyeob;Lee, Byung G.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권2호통권130호
    • /
    • pp.24-28
    • /
    • 2005
  • Monte Carlo simulation was performed on theoretical models of plywood warp for southern yellow pine plywood originating from the United States. The objective of the investigation was to determine which plywood layers was more warp sensitive to veneers that were manufactured to an undesired thickness. This study found that for a balanced panel (a panel of equal target thickness for each of five layers) manufactured veneers of undesired thickness would experience minimal warp. The veneers of undesired thickness placed in the center of the plywood panel also provided a minimum change of plywood warp properties. The panel warp was very sensitive to surface veneers constructed with undesired thickness. Conversely, this study confirms that monitoring of veneer thickness and proper allocations within the plywood lay-up were critical.

단순한 디자인 방법을 이용한 덴팅 영향인자에 관한 연구 (A Parametric Study of Denting Using a Simplified Design Approach)

  • 정동원
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1472-1479
    • /
    • 2002
  • In order to improve automotive fuel economy, vehicle weight should be reduced. Achieving significant weight reductions will normally require reducing the panel thickness or using alternative materials such as aluminum alloy sheet. These changes will affect the dent resistance of the panel. In this study, the correlation between panel size, curvature, thickness, material properties and dent resistance is investigated. A parametric approach is adopted, utilizing a "design software" tool incorporating empirical equations to predict denting and panel stiffness for simplified panels. The most effective period to optimize an automotive body panel is early in its development. The developed design program can be used to minimize panel thickness or compare different materials, while maintaining adequate panel performance.

A Parametric Study of Sheet Metal Denting Using a Simplified Design Approach

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1673-1686
    • /
    • 2002
  • In the interest of improved automotive fuel economy, one solution is reducing vehicle weight. Achieving significant weight reductions will normally require reducing the panel thickness or using alternative materials such as aluminum alloy sheet. These changes will affect the dent resistance of the panel. In this study, the correlation between panel size, curvature, thickness, material properties and dent resistance is investigated. A parametric approach is adopted, utilizing a "design software" tool incorporating empirical equations to predict denting and panel stiffness for simplified panels. The most effective time to optimize an automotive body panel is early in its development. The developed design program can be used to minimize panel thickness or compare different materials, while maintaining adequate panel performance.

Blast behavior of steel infill panels with various thickness and stiffener arrangement

  • Lotfi, Saeid;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.587-600
    • /
    • 2018
  • Infill panel is the first element of a building subjected to blast loading activating its out-of-plane behavior. If the infill panel does not have enough ductility against the loading, it breaks and gets damaged before load transfer and energy dissipation. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Also, it plays a pivotal role in maintaining sensitive main parts against blast loading. Concerning enough ductility of the infill panel out-of-plane behavior, the impact force enters the horizontal diaphragm and is distributed among the lateral elements. This article investigates the behavior of steel infill panels with different thicknesses and stiffeners. In order to precisely study steel infill panels, different ranges of blast loading are used and maximum displacement of steel infill under such various blast loading is studied. In this research, finite element analyses including geometric and material nonlinearities are used for optimization of the steel plate thickness and stiffener arrangement to obtain more efficient design for its better out-of-plane behavior. The results indicate that this type of infill with out-of-plane behavior shows a proper ductility especially in severe blast loadings. In the blasts with high intensity, maximum displacement of infill is more sensitive to change in the thickness of plate rather the change in number of stiffeners such that increasing the number of stiffeners and the plate thickness of infill panel would decrease energy dissipation by 20 and 77% respectively. The ductile behavior of steel infill panels shows that using infill panels with less thickness has more effect on energy dissipation. According to this study, the infill panel with 5 mm thickness works better if the criterion of steel infill panel design is the reduction of transmitted impulse to main structure. For example in steel infill panels with 5 stiffeners and blast loading with the reflected pressure of 375 kPa and duration of 50 milliseconds, the transmitted impulse has decreased from 41206 N.Sec in 20 mm infill to 37898 N.Sec in 5 mm infill panel.

The politic plan research for furniture industrial activation in the northern part of Gyeonggi-Province

  • Im, Kwang-Soon;Kim, Houn-Chul;Park, Byung-Dae
    • 한국가구학회지
    • /
    • 제21권6호
    • /
    • pp.449-458
    • /
    • 2010
  • 본 연구는 중밀도섬유판(MDF)의보드두께에 따른 수평밀도분포(HDD: horizontal density distribution)를 조사하기 위해 수행하였다. 생산공장에서 제조된 보드두께가 다른 5 종류 즉 2 mm, 4.5 mm, 9 mm, 18 mm 및 30 mm의 원판을 두 가지 다른 시편크기 즉 $500{\times}500\;mm$$120{\times}120\;mm$로 제작하여 수평밀도분포를 측정하였다. 전체적으로MDF의 밀도는 보드두께가 증가할수록 감소하는 경향을 보였으며, 가장 얇은 보드두께의 MDF가 가장높은 밀도를 나타내었다. 수평밀도분포의 변이는 작은 크기 즉 $120{\times}120\;mm$의 시편에서 큰 차이를 보여 MDF의 보드두께가 수평밀도분포에 큰 영향을 미치는 것으로 나타났으며 보드두께가 클수록 감소하는 경향을 나타내었다. 또 보드두께가 적을수록 수평밀도분포의 밀도분포는 컸으나 보드두께가 클수록 밀도범위가 좁게 나타났다. 수평밀도분포의 변이계수(COV)는 보드두께가 증가함에 따라 감소하는 경향을 보였다. 요약하면 MDF 보드두께는 수평밀도분포에 매우 큰 영향을 미치며시편의 크기 또한 상당한 영향을 미치는 것으로 나타났다.

  • PDF

A mathematical steel panel zone model for flanged cruciform columns

  • Saffari, Hamed;Sarfarazi, Sina;Fakhraddini, Ali
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.851-867
    • /
    • 2016
  • Cruciform sections are an appropriate option for columns of orthogonal moment resisting frames for equal bending strength and stiffness about two main axes and the implementation is easier for continuity plates. These columns consist of two I-shaped sections, so that one of them is cut out in middle and two generated T-shaped sections be welded into I-shaped profile. Furthermore, in steel moment frames, unbalance moment at the beam-column connection leads to shear deformation in panel zone. Most of the obtained relations for panel zone strength derived from experimental and analytical results are on I-shaped columns with almost thin flanges. In this paper, a parametric study has been carried out using Finite Element Method (FEM) with effective parameters at the panel zone behavior. These parameters consist of column flange thickness, column web thickness, and thickness of continuity plates. Additionally, a mathematical model has been suggested to determine strength of cruciform column panel zone and has been shown its accuracy and efficiency.

샌드위치 복합소재가 적용된 틸팅 차량의 단열 특성 평가 연구 (Evaluation of the Property of adiabatic Insulation for TTX Train with Sandwich Composite bodyshell)

  • 이상진;오경원;정종철;조세현;서승일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.251-256
    • /
    • 2005
  • This study was performed the heat transportation ratio of three types of the following sandwich panel by KS F 2278(2003) ; Type ${\sharp}1$ : Carbon/epoxy Aluminum Honeycomb and Balsa Core Sandwich Panel(Thickness : 37mm), Type ${\sharp}2$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 57mm), and Type ${\sharp}3$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 37mm). Also was performed the heat transportation of next three types of the following sandwich panel by KS F2277(2002) ; Type ${\sharp}4$ and ${\sharp}5$ : 27mm, and 35mm thick-Aluminum Honeycomb Sandwich Panels, and Type ${\sharp}6$ : 27mm thick-Foaming Aluminum Sandwich Panel. It is the larger area between the skin and core, the heat transportation ratio is the higher, and when it is composed of the hybrid composite structure, good insulation property was shown.

  • PDF

FCP(Free-form Concrete Panel)제작 과정에서 FCP두께유지에 관련한 영향요인 분석 (Analysis of Factors Related to Maintaining FCP Thickness in the Manufacturing Process of Freeform Concrete Panel)

  • 정경태;김기혁;윤지영;송하영;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.4-5
    • /
    • 2019
  • With recent advances in computer technology, the ratio of free-form building designs to those of the past is increasing gradually. However, the current technology of free-form structure is very low. The core technology for free-form building implementation is the manufacturing technology of FCP (Free-form Concrete Panel), which indicates an unformed outside, and through the development of FCP manufacturing technology, the construction technology of free-form architecture can be enhanced. The inside and outside of an free-form building should be represented by the designer's intended curvature, and the panel's thickness by segment should be constant. For this reason, the technology that keeps the thickness of panels constant during the FCP production process is a key technology that can improve the quality of FCP. In this study, a basic study on ways to maintain a constant thickness of FCP is conducted.

  • PDF