• 제목/요약/키워드: pan-genome

검색결과 42건 처리시간 0.024초

항산화식품을 이용한 노인 급식 식단 작성 및 만족도 평가 -서울 일부 60세 이상 성인 및 노인을 대상으로- (Evaluation of Menus Using Antioxidant-Rich Foods at a Congregate Meal Program for the Korean Elderly)

  • 박선주;이해정;최혜미
    • 대한지역사회영양학회지
    • /
    • 제11권6호
    • /
    • pp.761-770
    • /
    • 2006
  • The purpose of this study was to plan a 5-day menu using antioxidant-rich foods (vitamin A. vitamin C, vitamin E, phytochemicals) for a congregate meal program for the elderly and to evaluate the satisfaction of menus. The elderly participated in the congregate meal program at Guro Elderly Welfare Facility during October, 2003 (120 persons / day). The elderly liked yungyangbab, cooked rice with sweet potato and pumpkin, soybean paste soup with chinese cabbage, pan-fried cuttlefish patty with chopped soybean sprout, pan-fried beef patty with tofu and ginseng, fresh vegetable salad and most of desserts. The leftovers of menus were negatively correlated with satisfaction of menus. The 5-day menu contained over 1/3 of KDRIs (Dietary Reference Intakes for Koreans) except fiber calcium, vitamin K and vitamin E. In conclusion, menus using antioxidant-rich foods for a congregate meal program for the elderly will improve nutrient intakes and satisfaction of the meal program. It may help to prevent chronic diseases and improve healthy lives of the Korean elderly.

Pan-Genomics of Lactobacillus plantarum Revealed Group-Specific Genomic Profiles without Habitat Association

  • Choi, Sukjung;Jin, Gwi-Deuk;Park, Jongbin;You, Inhwan;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1352-1359
    • /
    • 2018
  • Lactobacillus plantarum is a lactic acid bacterium that promotes animal intestinal health as a probiotic and is found in a wide variety of habitats. Here, we investigated the genomic features of different clusters of L. plantarum strains via pan-genomic analysis. We compared the genomes of 108 L. plantarum strains that were available from the NCBI GenBank database. These genomes were 2.9-3.7 Mbp in size and 44-45% in G+C content. A total of 8,847 orthologs were collected, and 1,709 genes were identified to be shared as core genes by all the strains analyzed. On the basis of SNPs from the core genes, 108 strains were clustered into five major groups (G1-G5) that are different from previous reports and are not clearly associated with habitats. Analysis of group-specific enriched or depleted genes revealed that G1 and G2 were rich in genes for carbohydrate utilization (${\text\tiny{L}}-arabinose$, ${\text\tiny{L}}-rhamnose$, and fructooligosaccharides) and that G3, G4, and G5 possessed more genes for the restriction-modification system and MazEF toxin-antitoxin. These results indicate that there are critical differences in gene content and survival strategies among genetically clustered L. plantarum strains, regardless of habitats.

Unraveling the hypoxia modulating potential of VEGF family genes in pan-cancer

  • So-Hyun Bae;Taewon Hwang;Mi-Ryung Han
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.44.1-44.10
    • /
    • 2023
  • Tumor hypoxia, oxygen deprivation state, occurs in most cancers and promotes angiogenesis, enhancing the potential for metastasis. The vascular endothelial growth factor (VEGF) family genes play crucial roles in tumorigenesis by promoting angiogenesis. To investigate the malignant processes triggered by hypoxia-induced angiogenesis across pan-cancers, we comprehensively analyzed the relationships between the expression of VEGF family genes and hypoxic microenvironment based on integrated bioinformatics methods. Our results suggest that the expression of VEGF family genes differs significantly among various cancers, highlighting their heterogeneity effect on human cancers. Across the 33 cancers, VEGFB and VEGFD showed the highest and lowest expression levels, respectively. The survival analysis showed that VEGFA and placental growth factor (PGF) were correlated with poor prognosis in many cancers, including kidney renal cell and liver hepatocellular carcinoma. VEGFC expression was positively correlated with glioma and stomach cancer. VEGFA and PGF showed distinct positive correlations with hypoxia scores in most cancers, indicating a potential correlation with tumor aggressiveness. The expression of miRNAs targeting VEGF family genes, including hsa-miR-130b-5p and hsa-miR-940, was positively correlated with hypoxia. In immune subtypes analysis, VEGFC was highly expressed in C3 (inflammatory) and C6 (transforming growth factor β dominant) across various cancers, indicating its potential role as a tumor promotor. VEGFC expression exhibited positive correlations with immune infiltration scores, suggesting low tumor purity. High expression of VEGFA and VEGFC showed favorable responses to various drugs, including BLU-667, which abrogates RET signaling, an oncogenic driver in liver and thyroid cancers. Our findings suggest potential roles of VEGF family genes in malignant processes related with hypoxia-induced angiogenesis.

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

Gramene database: A resource for comparative plant genomics, pathways and phylogenomics analyses

  • Tello-Ruiz, Marcela K.;Stein, Joshua;Wei, Sharon;Preece, Justin;Naithani, Sushma;Olson, Andrew;Jiao, Yinping;Gupta, Parul;Kumari, Sunita;Chougule, Kapeel;Elser, Justin;Wang, Bo;Thomason, James;Zhang, Lifang;D'Eustachio, Peter;Petryszak, Robert;Kersey, Paul;Lee, PanYoung Koung;Jaiswal, kaj;Ware, Doreen
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.135-135
    • /
    • 2017
  • The Gramene database (http://www.gramene.org) is a powerful online resource for agricultural researchers, plant breeders and educators that provides easy access to reference data, visualizations and analytical tools for conducting cross-species comparisons. Learn the benefits of using Gramene to enrich your lectures, accelerate your research goals, and respond to your organismal community needs. Gramene's genomes portal hosts browsers for 44 complete reference genomes, including crops and model organisms, each displaying functional annotations, gene-trees with orthologous and paralogous gene classification, and whole-genome alignments. SNP and structural diversity data, available for 11 species, are displayed in the context of gene annotation, protein domains and functional consequences on transcript structure (e.g., missense variant). Browsers from multiple species can be viewed simultaneously with links to community-driven organismal databases. Thus, while hosting the underlying data for comparative studies, the portal also provides unified access to diverse plant community resources, and the ability for communities to upload and display private data sets in multiple standard formats. Our BioMart data mining interface enable complex queries and bulk download of sequence, annotation, homology and variation data. Gramene's pathway portal, the Plant Reactome, hosts over 240 pathways curated in rice and inferred in 66 additional plant species by orthology projection. Users may compare pathways across species, query and visualize curated expression data from EMBL-EBI's Expression Atlas in the context of pathways, analyze genome-scale expression data, and conduct pathway enrichment analysis. Our integrated search database and modern user interface leverage these diverse annotations to facilitate finding genes through selecting auto-suggested filters with interactive views of the results.

  • PDF

한국산 양식송어에서 분리된 전염성 췌장괴저 바이러스의 특성 (Characterization of the Infectious Pancreatic Necrosis Virus (IPNV) isolated from Pan-Cultured Rainbow Trout in Korea)

  • 박정우;이정진;정가진;하영칠
    • 미생물학회지
    • /
    • 제27권3호
    • /
    • pp.225-230
    • /
    • 1989
  • 1983년 우리나라에서 처음으로 전염성췌장괴저 바이러스가 분리되기 시작한 이래 여러가지 종류의 내수며 양식 물고고기로부터 이 바이러스가 검출되어 왔다. 세계적으로 안정되고 있는 세가지 표준혈청형 즉 VR-299, Sp 그리고 Ab형 에 대한 중화항체 실험으로, 우리나라에서 발견되는 전염성췌장괴저 바이러스는 주로 VR-299형임이 확인되어 왔으나 대청댐에서 양식된 송어로부터 발견된 한 주의 바이러스는 독특한 혈청형을 보이고 있어 그 특성을 조사하였다. 이 바이러스로부터 단백질과 핵산을 분리하여 세가지 표준 혈청형 바이러스의 그것과 비교하여 본 결과, 크기에 있어 분명한 차이가 보였고 중화항체를 이용한 감염저지 실험으로 Sp 형과 비교적 가까운 연관관계를 가지는 거승로 밝혀졌으나, 세가지 표준 혈청과는 뚜렷이 구분되는 새로운 혈청형으로 판정되었다.

  • PDF

KF-1607, a Novel Pan Src Kinase Inhibitor, Attenuates Obstruction-Induced Tubulointerstitial Fibrosis in Mice

  • Dorotea, Debra;Lee, Seungyeon;Lee, Sun Joo;Lee, Gayoung;Son, Jung Beom;Choi, Hwan Geun;Ahn, Sung-Min;Ha, Hunjoo
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2021
  • Src family kinases (SFKs), an important group of non-receptor tyrosine kinases, are suggested to be excessively activated during various types of tissue fibrosis. The present study investigated the effect of KF-1607, an orally active and a newly synthesized Src kinase inhibitor (SKI) with proposed low toxicity, in preventing the progression of renal interstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed in 6-week-old male C57BL/6 mice to induce renal interstitial fibrosis. Either KF-1607 (30 mg/kg, oral gavage) or PP2 (2 mg/kg, intraperitoneal injection), a common experimental SKI, was administered to mice for seven days, started one day prior to surgery. UUO injury-induced SFK expression, including Src, Fyn, and Lyn kinase. SFK inhibition by KF-1607 prevented the progression of tubular injury in UUO mice, as indicated by decreases in albuminuria, urinary KIM-1 excretion, and kidney NGAL protein expression. Renal tubulointerstitial fibrosis was attenuated in response to KF-1607, as shown by decreases in α-SMA, collagen I and IV protein expression, along with reduced Masson's trichrome and collagen-I staining in kidneys. KF-1607 also inhibited inflammation in the UUO kidney, as exhibited by reductions in F4/80 positive-staining and protein expression of p-NFκB and ICAM. Importantly, the observed effects of KF-1607 were similar to those of PP2. A new pan Src kinase inhibitor, KF-1607, is a potential pharmaceutical agent to prevent the progression of renal interstitial fibrosis.

Perspectives on the genomics research of important crops in the tribe Andropogoneae: Focusing on the Saccharum complex

  • Choi, Sang Chul;Chung, Yong Suk;Kim, Changsoo
    • 농업과학연구
    • /
    • 제43권1호
    • /
    • pp.1-13
    • /
    • 2016
  • Climate changes are shifting the perception of C4 photosynthetic crops due to their superior adaptability to harsh conditions. The tribe Andropogoneae includes some economically important grasses, such as Zea mays, Sorghum bicolor, Miscanthus spp., and Saccharum spp., representing C4 photosynthetic grasses. Although the Andropogoneae grasses diverged fairly recently, their genomic structures are remarkably different from each other. As previously reported, the family Poaceae shares the pan-cereal duplication event occurring ca. 65 MYA. Since this event, Sorghum bicolor has never experienced any additional duplication event. However, some lineage-specific duplication events were reported in Z. mays and Saccharum spp., and, more recently, it was revealed that a shared allotetraploidization event occurred before the divergence between Miscanthus and Saccharum (but after the divergence from S. bicolor), which provided important clues to those two species having large genome sizes with complicated ploidy numbers. The complex genomic structures of sugarcane and Miscanthus (defined as the Saccharum complex along with some other taxa) have had a limiting effect on the use of their molecular information in breeding programs. For the last decade, genomics-associated technologies have become an important tool for molecular crop breeding (genomics-assisted breeding, GAB), but it has not been directly applied to sugarcane and Miscanthus due to their complicated genome structures. As genomics research advances, molecular breeding of those crops can take advantage of technical improvements at a reasonable cost through comparative genomic approaches. Active genomic research of non-model species using closely related model species will facilitate the improvement of those crops in the future.

Gateway RFP-Fusion Vectors for High Throughput Functional Analysis of Genes

  • Park, Jae-Yong;Hwang, Eun Mi;Park, Nammi;Kim, Eunju;Kim, Dong-Gyu;Kang, Dawon;Han, Jaehee;Choi, Wan Sung;Ryu, Pan-Dong;Hong, Seong-Geun
    • Molecules and Cells
    • /
    • 제23권3호
    • /
    • pp.357-362
    • /
    • 2007
  • There is an increasing demand for high throughput (HTP) methods for gene analysis on a genome-wide scale. However, the current repertoire of HTP detection methodologies allows only a limited range of cellular phenotypes to be studied. We have constructed two HTP-optimized expression vectors generated from the red fluorescent reporter protein (RFP) gene. These vectors produce RFP-tagged target proteins in a multiple expression system using gateway cloning technology (GCT). The RFP tag was fused with the cloned genes, thereby allowing us localize the expressed proteins in mammalian cells. The effectiveness of the vectors was evaluated using an HTP-screening system. Sixty representative human C2 domains were tagged with RFP and overexpressed in HiB5 neuronal progenitor cells, and we studied in detail two C2 domains that promoted the neuronal differentiation of HiB5 cells. Our results show that the two vectors developed in this study are useful for functional gene analysis using an HTP-screening system on a genome-wide scale.

Correlation-based and feature-driven mutation signature analyses to identify genetic features associated with DNA mutagenic processes in cancer genomes

  • Jeong, Hye Young;Yoo, Jinseon;Kim, Hyunwoo;Kim, Tae-Min
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.40.1-40.11
    • /
    • 2021
  • Mutation signatures represent unique sequence footprints of somatic mutations resulting from specific DNA mutagenic and repair processes. However, their causal associations and the potential utility for genome research remain largely unknown. In this study, we performed PanCancer-scale correlative analyses to identify the genomic features associated with tumor mutation burdens (TMB) and individual mutation signatures. We observed that TMB was correlated with tumor purity, ploidy, and the level of aneuploidy, as well as with the expression of cell proliferation-related genes representing genomic covariates in evaluating TMB. Correlative analyses of mutation signature levels with genes belonging to specific DNA damage-repair processes revealed that deficiencies of NHEJ1 and ALKBH3 may contribute to mutations in the settings of APOBEC cytidine deaminase activation and DNA mismatch repair deficiency, respectively. We further employed a strategy to identify feature-driven, de novo mutation signatures and demonstrated that mutation signatures can be reconstructed using known causal features. Using the strategy, we further identified tumor hypoxia-related mutation signatures similar to the APOBEC-related mutation signatures, suggesting that APOBEC activity mediates hypoxia-related mutational consequences in cancer genomes. Our study advances the mechanistic insights into the TMB and signature-based DNA mutagenic and repair processes in cancer genomes. We also propose that feature-driven mutation signature analysis can further extend the categories of cancer-relevant mutation signatures and their causal relationships.