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Introduction 

Recent advances in genomic sequencing technologies have yielded a huge catalog of so-
matic mutations in cancer genomes across diverse tumor types [1]. In addition to identi-
fying cancer-driver mutations, including druggable targets [2,3], clinical benefits associ-
ated with the quantitative nature of somatic mutations, such as the tumor mutation bur-
den (TMB), have been demonstrated to be predictive markers for immune checkpoint 
inhibitors [4-6]. The TMB of cancer genomes is highly variable within and between tu-
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formed PanCancer-scale correlative analyses to identify the genomic features associated 
with tumor mutation burdens (TMB) and individual mutation signatures. We observed that 
TMB was correlated with tumor purity, ploidy, and the level of aneuploidy, as well as with 
the expression of cell proliferation-related genes representing genomic covariates in evalu-
ating TMB. Correlative analyses of mutation signature levels with genes belonging to spe-
cific DNA damage-repair processes revealed that deficiencies of NHEJ1 and ALKBH3 may 
contribute to mutations in the settings of APOBEC cytidine deaminase activation and DNA 
mismatch repair deficiency, respectively. We further employed a strategy to identify fea-
ture-driven, de novo mutation signatures and demonstrated that mutation signatures can 
be reconstructed using known causal features. Using the strategy, we further identified tu-
mor hypoxia-related mutation signatures similar to the APOBEC-related mutation signa-
tures, suggesting that APOBEC activity mediates hypoxia-related mutational consequences 
in cancer genomes. Our study advances the mechanistic insights into the TMB and signa-
ture-based DNA mutagenic and repair processes in cancer genomes. We also propose that 
feature-driven mutation signature analysis can further extend the categories of cancer-rel-
evant mutation signatures and their causal relationships. 
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mor types [7], with varying causal mechanisms that lead to hyper-
mutation and mutator phenotypes [8]. To advance our under-
standing on the heterogeneity of TMB and its clinical relevance, it 
is essential to assess the roles of various exogenous and endoge-
nous mutagenic agents and DNA repair-replication processes [9], 
as well as their relationship with genomic features.  

Mutational processes are known to leave characteristic sequence 
features in the genomes [10]. Well-recognized examples include 
C:G > A:T transversions and C:G > T:A transitions associated 
with the mutagens of tobacco smoking in lung cancers [11] and ul-
traviolet radiation in skin cancers [12], respectively. The distinct se-
quence features of individual mutagenic processes indicate that the 
mutational processes that have been operative in cancer genomes 
can be inferred by sequence-based analyses. Accordingly, recently 
proposed trinucleotide context-based analysis of cancer genomes 
based on deconvolution techniques, such as non-negative matrix 
factorization (NMF), has revealed more than 30 mutations signa-
tures across 7,000 cancer genomes (hereafter, Sig.#1 to Sig.#30 as 
annotated in the Sanger mutation signature database; https://can-
cer.sanger.ac.uk/cosmic/signatures) [10,13]. Signature-level muta-
tion analysis enables the molecular dissection of TMB according to 
the distinct origins of the mutations because mutation signatures 
are often associated with causal genetic mechanisms or genes corre-
sponding to endogenous mutagens and DNA repair-replication 
processes. For example, overactivity of APOBEC cytidine deami-
nase leads to the accumulation of mutations consistent with Sig.#2 
and Sig.#13, with sequence preferences of C > G and C > T within 
the TpCpN trinucleotide contexts [14]. Genetic events responsible 
for the deficiency of DNA repair enzymes have also been shown for 
some mutation signatures, e.g., somatic DNA mismatch repair defi-
ciency (MMRd) in colorectal and endometrial cancers are fre-
quently associated with promoter hypermethylation and transcrip-
tional downregulation of MLH1 [7]. In addition, deregulation of 
DNA repair or the proofreading polymerase genes of BRCA - [15] 
and POLE-deficient genomes [16] leads to mutations consistent 
with Sig.#3 and Sig.#10, respectively [10]. However, the genetic 
mechanisms and potential gene markers for the majority of muta-
tion signatures are still largely unknown. 

It is also possible that the current list of mutation signatures is not 
yet complete. The missing mutation signatures may be found in so-
matic mutations with a unique presentation, e.g., a recent mutation 
signature analysis focusing on clustered mutations revealed a novel 
signature associated with an activity of a translesional polymerase 
of POLH [17]. We also reported a cisplatin treatment-related muta-
tion signature that was exclusively observed in head and neck can-
cers with a history of chemotherapy, not in treatment-naïve cancer 

genomes [18]. Given that the current list of mutation signatures 
has been largely obtained by deconvolution-based methods, such 
as NMF, methods using differential nucleotide frequencies may 
lead to the identification of novel mutation signatures representing 
specific tumor phenotypes or genotypes. 

Large-scaled multi-omics cancer genome data may serve as valu-
able resources to identify underlying genetic mechanisms and key 
DNA repair genes that contribute to somatic mutations and the 
TMB of cancer genomes. In this study, we performed PanCan-
cer-scaled correlative analyses that linked TMB and mutation sig-
natures with multi-omics datasets available from the PanCan-
cer-scale Cancer Genome Atlas (TCGA) consortium. We first 
evaluated the correlation of TMBs with systematic genomic fea-
tures, such as tumor purity, ploidy, and aneuploidy. Then, TMB 
was deconvoluted into the level of known mutation signatures (i.e., 
the extent of contribution of 30 mutation signatures in given can-
cer genomes), which were subject to multi-omics correlative anal-
yses to discover known and novel relationships between mutation 
signatures and their potential genetic mechanisms. We also pro-
posed a feature-driven mutation signature discovery method to 
identify de novo mutation signatures as differential trinucleotide 
frequencies based on tumor features of interests, such as homolo-
gous recombination (HR) deficiency or tumor hypoxia. 

Methods 

Mutation information 
The TCGA cancer mutation profiles as well as from other 
multi-omics dataset encompassing 9,587 tumor specimens and 
> 30 tumor types were downloaded from TCGA PanCancer Atlas 
(https://gdc.cancer.gov/about-data/publications/pancanatlas). 
Duplicate cases were removed and only mutations from primary 
tumor genomes, ignoring those from recurrent or metastatic ge-
nomes, were considered. TMB was defined as the sum of all types 
of somatic calls for single nucleotide variations and short indels. 
We also obtained tumor purity and ploidy data, as well as other 
copy number-related variables from the literature [19].  

Gene set enrichment analysis 
To identify molecular functions associated with TMB, we calculat-
ed Pearson’s correlation coefficients for individual gene expres-
sions (log-scaled RSEM) with TMB (log-scaled). Gene-level cor-
relations were subjected to the pre-ranked version of gene set en-
richment analysis (GSEA) with Gene Ontology (GO) terms [20] 
available in MSigDB (http://software.broadinstitute.org/gsea/
msigdb/index.jsp; c5 category). 

https://doi.org/10.5808/gi.210472 / 11

Jeong HY et al. • Mutation signatures and TMB of cancer genomes

http://


Signature analysis 
For known mutation signatures, we download 30 signatures as 
Sanger ver.2 mutation signatures (Sig.#1–Sig.#30, https:// cancer.
sanger.ac.uk/cosmic/signatures). For signature deconvolution, we 
used deconstructSigs R packages version 1.8.0 in R version 3.6.1 
[21] to derive the relative contribution of individual mutation sig-
natures to given cancer genomes. The estimated contribution or 
the number of mutations belonging to individual signatures were 
used as signature levels for the subsequent correlative analyses. For 
mutation signature analysis, we used 6,040 cancer genomes har-
boring no less than 50 mutations. For correlation, we selected 254 
genes that belong to DNA damage and repair (DDR) processes 
available in a previous study [22]. 

Supervised identification of mutation signatures 
A mutation signature representing APOBEC overactivity was de-
rived as the differentials of trinucleotide frequencies between the 
tumors with high and low expression of APOBEC3A (95th and 
5th percentiles, respectively). In the case of the mutation signature 
representing MLH1 deficiency, the differentials were calculated 
between the low and high expression of MLH1. Only positive val-
ues of differential trinucleotide frequencies were considered for 
mutation signatures, given that negative values have no biological 
significance for signature-based analysis. For the POLE-signature, 
the differential trinucleotide frequencies were obtained by com-
parison of the POLE-mutated and wild-type genomes. Such iden-
tified feature-driven mutation signatures were compared with 
known mutation signatures using hierarchical clustering of similar-
ities in the 96 trinucleotide frequencies. 

Mutation signatures representing HR deficiency and tumor 
hypoxia 
Three HR deficiency-representing scores of the number telomeric 
allelic imbalance (NtAI), large scale transition (LST), and loss of 
heterozygosity (HRD-LOH) were obtained from a previous pub-
lication [23]. Eight scores representing tumor hypoxia estimated 
from mRNA signatures were also obtained from the literature 
[24]. Two types of mutation signatures were acquired per score. 
For an example of a hypoxia score, positive and negative differen-
tial values of the trinucleotide frequencies between genomes with 
high and low hypoxia scores were obtained as hypoxia- and nor-
moxia-representing mutation signatures. To estimate the mutation 
signature levels using two signatures for each genome score, we 
employed metagene projection, where the positive linear combi-
nation of the two mutation signatures, i.e., hypoxia and normoxia 
from a single genome score, were projected onto the normalized 

mutation frequencies across the genomes to be examined [25]. 
For metagene projection, we used Moore-Penrose generalized 
pseudoinverse with the ginv function of the R MASS library (ver-
sion 7.3–51.4) as previously described [26].  

Results  

Genomic features associated with TMB across cancer 
genomes 
To identify potential genomic covariates of TMB, we performed a 
PanCancer-scale correlative analysis with systematic genomic fea-
tures, such as tumor purity and ploidy for 9,857 TCGA cases. 
First, we observed that the log-transformed TMB was inversely 
correlated with tumor purity (r =  –0.118) (Fig. 1A and 1B). We 
previously showed that the tumor purity represents a surrogate 
marker for the level of tumor-infiltrating immune cells, including 
cytotoxic T cells [27], and the observed purity-TMB relationship 
may reflect the association between the level of tumor-infiltrating 
immune cells and TMB. We also observed that TMB was positive-
ly correlated with the level of aneuploidy, i.e., TMB was correlated 
with tumor ploidy (r =  0.161) (Fig. 1C and 1D) and also with the 
number of dosage-imbalanced copy number segments (r =  0.291) 
(Fig. 1E). These relationships have been previously reported 
[19,28], including the presence of a unique subset of tumors 
showing depletion of the copy number segments and an elevated 
mutation rate [7], a majority of which represented microsatellite 
instability-high or high microsatellite instability (MSI-H) genomes 
(red dots in Fig. 1E). 

To assess the feasibility whereby the multi-omics dataset, in-
cluding expression data, can be exploited to support the previously 
established relationship, we evaluated MLH1, whose promoter 
methylation, along with transcriptional downregulation are fre-
quently observed in MSI-H genomes. Fig. 1F and 1G show the in-
verse and positive correlation of MLH1 methylation and transcript 
levels with TMB (r =  –0.349 and r =  0.339, respectively). This 
finding is consistent with a previous study that reported the DNA 
promoter methylation of MLH1 was a major somatic mechanism 
and resulted in transcriptional downregulation leading to MMRd 
[29]. We also evaluated APOBEC3A, whose cytidine deaminase 
activity is associated with a substantial number of somatic muta-
tions across multiple tumor types [14,30] (Supplementary Fig. 1). 
In contrast to MLH1, APOBEC3A showed a positive correlation 
with its transcript levels and TMB; however, the level of methyla-
tion of APOBEC3A was inversely correlated with TMB, suggesting 
that the transcript levels are controlled, at least to some extent, by 
promoter methylation levels as potential transcriptional regulators. 
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We also performed GSEA to identify molecular functions asso-
ciated with the TMB (Supplementary Tables 1 and 2). The genes 
whose expression levels are positively or inversely correlated with 
TMB were enriched corresponded to cell-cycle and ion transport 
functions, respectively. Cell cycle-related replication stress is 
known to be a potential cause of mutations [31] and the transcrip-
tional activation of cell-cycle-related genes may be related to the 
number of cell cycles of cancer stem cells. However, given that the 
TMB represents an admixture of mutations resulting from varying 
mutagenic or repair processes, the correlative analysis of TMB is 
limited in identifying the specific causal genes or mechanisms. 

Mutation signature correlative analyses for DNA DDR genes 
The deconvolution-based, mutation signature level represents the 
relative contribution and activity levels of specific mutagenic or re-
pair processes and may be a more appropriate resource for correla-
tive analyses. For known mutation signatures, we obtained 30 mu-

tation signatures (Sanger ver. 2 mutation signatures, annotated 
Sig.#1–Sig.#30). For PanCancer tumor specimens, we estimated 
the relative contribution or signature levels of 30 known mutation 
signatures [21] and performed correlative analyses with the ex-
pression level of 254 genes belonging to the DDR pathway [22]. 
The distribution of PanCancer-scale correlation levels for 30 
known mutation signatures are shown for gene expression and 
promoter methylation levels of the DDR genes, respectively (Fig. 
2A and 2B). As expected, the lowest level of correlation with gene 
expression of MLH1 (r =  –0.551) (arrow in Fig. 2A) and the sec-
ond-highest level of correlation with promoter methylation of 
MLH1 (r =  0.233) (arrow in Fig. 2B) were observed with Sig.#6 
levels representing MMRd. The correlation levels for individual 
mutation signatures with DDR gene expression and promoter 
methylation are available in Supplementary Tables 3 and 4.  

In addition to MLH1, a substantial level of inverse correlations 
were observed for certain DDR gene expression and mutation sig-

Fig. 1. The relationship between tumor mutation burden (TMB) and other genomic features. (A) A scatter plot shows the inverse correlation 
between log2-transformed TMB and tumor purity. (B) TMB is shown for three equal-sized tumor bins (low-moderate-high tumor purity). 
(C, D) The positive correlation between TMB and tumor ploidy levels. (E) A scatter plot shows the positive correlation between TMB and the 
number of dosage-imbalance segments. Red dots indicate tumors with high microsatellite instability. (F, G) TMBs are shown against the 
expression level of MLH1 and the level of promoter methylation of MLH1.
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nature pairs, such as NHEJ1-Sig.#2 (r =  –0.221, 1st ranked in 
Sig.#2) (Fig. 2A) and BRCA1-Sig.#3 (r =  –0.224, 1st ranked in 
Sig.#3) (Fig. 2A), suggesting that their deficiency may give rise to 
mutations belonging to the corresponding mutation signatures. 
The association between BRCA loss and Sig.#3 representing HR 
deficiency has been well documented [15]; however, the associa-
tion between NHEJ1 that encodes essential DNA repair factors 
mediating non-homologous end-joining (NHEJ) with Sig.#2 is 
not well known. Furthermore, NHEJ1 expression was also nega-
tively associated with the level of Sig.#13 (r =  –0.212, 1st ranked 
in Sig.#13) (Fig. 2A), which is similar to Sig.#2 in potential causali-
ty and nucleotide composition [10]. Hierarchical clustering of 

joint profiles of mutation signature levels and DDR gene expres-
sion also highlights the association between NHEJ1 and Sig.#2/
Sig.#13 (Supplementary Fig. 2). Since no substantial level of cor-
relation between NHEJ1 and APOBEC3A was noted, we classi-
fied the genomes into four classes according to the median expres-
sion of two genes (APOBEC3A-high/low and NHEJ1-high/low) 
and the Sig.#2 levels are shown against four classes (Fig. 2C). Ge-
nomes with low expression levels of APOBEC3A were almost de-
void of Sig.#2 levels, regardless of NHEJ1 expression levels. How-
ever, the APOBEC3A-expressing genomes were further discrimi-
nated into two classes according to NHEJ1 expression levels with 
significant differences in the Sig.#2 levels (A-hi, N-hi vs. A-hi, N-lo, 

Fig. 2. Correlative analysis of mutation levels with the damage and repair (DDR) gene. (A) The levels of 30 mutation signatures were 
correlated with the expression of 250 DDR genes. The Y-axiss shows the correlation, with arrows for selected genes (ALKBH3, BRCA1, 
MLH1, and NHEJ1). (B) The correlation between the 30 mutation signature levels and DDR gene promoter methylation levels. (C) A scatter 
plot shows the expression level of APOBEC3A and NHEJ1 (log-scaled). The cancer genomes were discriminated into four classes using the 
median APOBEC3A and NHEJ1 expression (shown by red lines). (D) A significant difference was observed in the Sig.#2 levels of those with 
or without NHEJ1 deficiency only for APOBEC3A overexpression (p = 2.6e-26; t-test). (E) A scatter plot shows the distribution of ALKBH3 
expression (x-axis; log2-scaled) and MLH1 expression (y-axis; log2-scaled). Red dots indicate the high microsatellite instability cases. (F) A 
significant difference was identified for the Sig.#6 levels between those with or without ALKBH3 deficiency (p = 1.04e-12; t-test) only with 
MLH1 deficiency.
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p =  2.6e-26; t-test) (Fig. 2D). 
These findings suggest that NEHJ1 deficiency alone does not 

contribute to Sig.#2 mutations without APOBEC3A activity; 
however, an NHEJ1 deficiency may potentiate the mutagenic ac-
tivity of APOBEC cytidine deaminase. Given the roles of NHEJ1 
in double-strand breakage (DSB) repair [32], it is assumed that an 
NHEJ1 deficiency may pose DSB repair leaving the transient sin-
gle strand terminus open as a substrate for APOBEC mutagenesis, 
but, this hypothesis requires further investigation. 

For Sig.#6 associated with MLH1 deficiency and MMRd, we 
also observed substantial correlation with ALKBH3 expression 
and ALKHB3 promoter methylation (r =  –0.215 and r =  0.304; 
2nd and 1st ranked in Sig.#6, respectively) (Fig. 2A and 2B). The 
relationship between the methylation level of MLH1 and ALK-
BH3 and the level of Sig.#6 are illustrated in the hierarchical clus-
tering of the joint methylation profiles and mutation signature lev-
els (Supplementary Fig. 2), as well as those of the DDR gene ex-
pression profiles (Supplementary Fig. 3). The prevalent epigenetic 
modification of ALKBH3 has been recently reported [22] but its 
functional significance is largely known. The similar regulatory re-
lationship (i.e., an inverse correlation between the expression and 
methylation) of MLH1 and ALKBH3 is not simply explained by 
genomic adjacency (ALKBH3 on 11p11.2 and MLH1 on 3p22.2, 
respectively). We further classified the genomes into four classes 
according to the median expression of MLH1 and ALKBH3 (Fig. 
2E; red dots for MSI-H cases) and the Sig.#6 levels are shown 
against four classes with significant difference (p =  1.04e-12, 
t-test) (Fig. 2F). This suggests that ALKBH3 deficiency may accel-
erate the generation or accumulation of Sig.#6-consistent muta-
tions in the context of MMRd induced by MLH1 deficiency. 

Feature-driven discovery of mutation signatures 
The correlation of gene expression or other genomic features, such 
as DNA promoter methylation levels with their attributed muta-
tion signature levels, suggests that the corresponding mutation sig-
nature can be directly derived using gene-level features, such as 
mRNA expression. For example, de novo mutation signatures rep-
resenting a deficiency in DDR genes can be derived as differential 
trinucleotide frequencies between the genomes with high and low 
expression of the gene. We tested the methods for three genes 
whose transcript levels or somatic mutations were associated with 
the cognate mutation signatures—Sig.#2/APOBEC3A (high-ex-
pression), Sig.#6/MLH1 (low-expression), and Sig.#10/POLE 
(somatic mutation) (Fig. 3). The mutation signature representing 
APOBEC overactivity was derived as differential trinucleotide fre-
quencies between the genomes with high expression of APOBE-

C3A and those with low expression. The MMRd-representing sig-
nature was also inferred from the comparison of genomes with low 
MLH1 expression and those with high MLH1 expression. The ge-
nomes with POLE mutations were also compared to those with-
out POLE mutations to derive POLE-related mutation signatures. 
Since the negative contribution of mutation profiles is not biologi-
cally meaningful in terms of mutation signatures, only positive dif-
ferentials were taken into account. Fig. 3A shows three mutation 
signatures derived from 96 trinucleotide frequencies, along with 
their cognate mutation signatures (Sig.#2, Sig.#6, and Sig.#10, re-
spectively). Fig. 3B also shows that feature-driven mutation signa-
tures were segregated along with their cognate signatures in terms 
of trinucleotide frequencies. 

In addition to single gene-based mutation signature discovery, 
we further tested whether the genomic features could be used for 
the discovery of de novo mutation signatures. We first obtained 
three somatic copy number alteration (SCNA)-based scores rep-
resenting HR deficiency (NtAI, LST, and HRD-LOH) [23]. As 
expected, three HR deficiency score-driven mutation signatures 
were similar to Sig.#3 in terms of trinucleotide frequencies (Fig. 
3C) and were also segregated along with Sig.#3 in hierarchical 
clustering (Fig. 3B). Next, we further explored whether the muta-
tion signature levels estimated by metagene projection for each 
HR deficiency score were correlated with the original scores of 
HR deficiency. For each of HR deficiency scores, the positive and 
negative differential of the trinucleotide frequencies were collected 
as pairs of mutation signatures corresponding to the scores (Pos. 
and Neg. signatures, respectively). The mutation signature levels 
were estimated by metagene projection for each pair of signatures 
and then were correlated with the original scores. Fig. 3D shows 
the level of correlation. Positive (r =  0.465–0.499) and negative 
correlation (r =  –0.171 to –0.208) were observed for the corre-
sponding score pairs, suggesting that the SCNA-based HR defi-
ciency scores could be reproduced to some extents, by the muta-
tion signature levels (see Supplementary Fig. 4 for individual cor-
relations). 

Mutation signatures representing tumor hypoxia 
To further test the feasibility of using feature-driven mutation sig-
natures, we selected tumor hypoxia as one of the key tumor hall-
marks associated with poor prognosis and treatment failure of var-
ious cancers [24]. We obtained eight mRNA signature-based tu-
mor hypoxia scores from the literature and identified mutation sig-
natures by the differential trinucleotide frequencies of mutations 
between hypoxic and normoxic tumors using the hypoxia scores. 
Of note, hierarchical clustering showed that the six of the eight hy-
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poxia score-based mutation signatures showed similarities to those 
of APOBEC-related Sig.#2 and Sig.#13 (Fig. 4A). In addition, the 
hypoxia scores also showed a substantial correlation with the gene 
expression levels of APOBEC3A (Fig. 4B), suggesting that the ge-
nomic consequences of tumor hypoxia, at least for somatic muta-
tions, were mainly attributed to APOBEC activity. For eight tumor 
hypoxia scores, the resulting mutation signatures and their levels 

measured by metagene projection were substantially correlated 
with the mRNA-based hypoxia scores (Fig. 4C). This suggests 
that the impact of tumor hypoxia in terms of somatic mutations 
may have specific nucleotide predisposition on the tumor genome 
and the level of impact may be predicted by the mutation profiles 
of cancer genomes. 

Fig. 3. Feature-driven mutation signatures. (A) Bar plots show the trinucleotide frequencies of Sig.#2, Sig.#6, and Sig.#10 (left). The 
differentials of the trinucleotide frequencies are shown as potential mutation signatures. For example, the differential of trinucleotide 
frequencies between genomes with high and low expression of APOBEC3A is shown, along with those for MLH1 expression and POLE 
mutations with similar frequency distributions with their cognate mutation signatures (right). (B) A heatmap of trinucleotide frequency-
based hierarchical clustering shows that Sig.#2, Sig.#6, and Sig.#10 are segregated with mutation signatures derived from APOBEC3A 
expression, MLH1 expression, and POLE mutations, respectively. Sig.#3 were also clustered with three mutation signatures derived from 
somatic copy number alterations (SCNA)‒based scores of HR deficiency. (C) Sig.#3 shows similar trinucleotide frequency distribution 
with differentials based on three homologous recombination (HR) deficiency scores of number of telomeric allelic imbalance (NtAI), large 
scale transition (LST), and homologous recombination deficiency–loss of heterozygosity (HRD-LOH). (D) The level of mutation signatures 
derived from HR deficiency scores shows a correlation with the HR deficiency scores. The signatures with positive and negative values were 
distinguished (Pos. and Neg. signatures, respectively) and separately analyzed for their correlation with HR deficiency scores (closed and 
open bars, respectively).
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Discussion 

In this study, we performed PanCancer-scaled correlative analyses 
for the TMB and their deconvoluted mutation signatures with var-
ious genomic features, including the expression of DDR genes. We 
further proposed an analytical framework to derive feature-driven 
mutation signatures representing the genotypic or phenotypic 
variables of interest. 

TMB, a measure of the total number of mutations in a given 
cancer genome, has been recently highlighted as a biomarker for 
treatment with immune checkpoint inhibitors [5,33]. Thus, it is 
important to identify TMB-correlating genomic features. This 
study demonstrated that systematic genomic variables of cancer 
genomes, such as tumor purity, ploidy, and the level of aneuploidy, 
were correlated with TMB. But whether the observed correlation 
was due to a causal relationship or the identified genomic features 

represented confounding factors remains unknown. For the latter, 
the correlating features can be taken into account in TMB-centric 
correlative analysis, e.g., clinical benefits of high TMB for immu-
notherapy. We recently demonstrated that tumor purity was a con-
founding factor for cancer genome analyses, including the correla-
tion between TMB and the abundance of tumor-infiltrating cells 
[27]. Given the overall positive correlation between TMB and the 
level of aneuploidy, it is still possible that an underlying mecha-
nism in the cancer genome elevates both the genomic instability in 
terms of tumor ploidy and aneuploidy, along with the TMB. One 
main assumption is that the TMB of individual cancer genomes 
represents the aggregate of multiple mutagenic and DNA re-
pair-replicative processes. GSEA only revealed the universal cellu-
lar functions of the cell cycles and chromosome-related genes were 
relatively overexpressed in high-TMB tumors. This is consistent 
with a previous assumption that the number of cell cycles and 

Fig. 4. Mutation signatures of tumor hypoxia. (A) Eight mutation signatures were derived based on the mRNA-based tumor hypoxia 
scores with literature-based annotation as obtained. A heatmap is shown to demonstrate that six out of eight tumor hypoxia-representing 
mutation signatures are co-segregated with APOBEC-related Sig.#2 and Sig.#13 (open box; upper) for 96 trinucleotide contexts. Two 
hypoxia mutations were also co-segregated with Sig.#19. (B) A bar plot shows correlations between the level of APOBEC3A transcripts 
and tumor hypoxia scores. Asterisks identify six signatures co-segregated with Sig.#2 and Sig.#13 in (A). (C) Correlations are shown for the 
mutation signature levels derived from the tumor hypoxia scores and the hypoxia scores. Red and green represent the correlations for tumor 
hypoxia and normoxia scores, respectively.
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thus, elevated cell cycling in cancer stem cells, may be associated 
with elevated TMB [31]. However, TMB-based correlative analy-
sis hardly points to specific DNA mutagenic or repair-replicative 
processes with potential biological or clinical relevance. To cope 
with this issue, we deconvoluted the TMB into known, multiple 
mutation signatures and used their levels for the correlative analy-
ses. Here, we focused on the expression and promoter DNA meth-
ylation of 270 DDR genes belonging to nine DNA damage-re-
pair-replicative processes [22]. Along with MLH1, whose promot-
er hypermethylation and the resulting transcriptional downregula-
tion lead to somatic MSI-H genotypes and the generation of muta-
tions belonging to Sig.#6, we observed an additional relationship 
between Sig.#2-vs.-NHEJ1 deficiency and Sig.#6-vs.-ALKBH3 de-
ficiency. In both cases, deficiencies in NHEJ1 and ALKBH3 alone 
did not increase mutations corresponding to Sig.#2 or Sig.#6. In-
stead, their deficiency is effective only in the genome with APO-
BEC overactivity and MMRd, suggesting that their potential mu-
tagenic activity requires specific conditions. In addition to further 
validation, the list of DDR genes showing high levels of correlation 
may serve as potential candidates in the search of hypermutated 
cancer genomes with clinical benefits [8]. 

Currently, available mutation signature discovery methods are 
classified into two categories, e.g., those for “de novo ” mutation 
signature extraction and the others for “signature refitting” using 
known mutation signatures [34]. For the former, unsupervised 
NMF or its derivatives have been proposed to extract the de novo 
mutation signatures whose lineage specificity and potential causal 
association are investigated post hoc . However, it has been rarely 
discussed whether the mutation signatures can be derived in a su-
pervised manner directly from phenotypic or genotypic scores of 
interests and can serve as a proxy to infer original scores. To test 
the feature-driven discovery of mutation signatures, we first 
demonstrated that Sig.#2, Sig.#6, and Sig.#10, known to be associ-
ated with APOBEC overexpression, MLH1 under-expression, and 
POLE mutations, could be derived using the associated genetic 
features, e.g., the differential trinucleotide frequencies between ge-
nomes with or without the causal features. Next, we used three 
SCNA-based scores representing HR deficiency to derive three 
mutation signatures, which were similar to Sig.#3 associated with 
BRCA deficiency. Of note, the levels of mutation signatures repre-
senting HR deficiency showed a concordance with the original 
SCNA-based HR deficiency scores, suggesting that the mutation 
profiles could be used to infer the level of HR deficiency, previous-
ly done by SCNA profiles. The use of quantitative features of so-
matic mutations to assess the nature of cancer genomes has been 
largely limited to TMB. However, our study demonstrated that the 

somatic mutations identified as mutation signatures could serve as 
cancer markers. The genomic alterations associated with tumor 
hypoxia have been previously reported, such as HR deficiency 
[24] and the deficiency of TP53 [35] and RAD53 [36]. Tumor 
hypoxia has been proposed to increase the mutation rates of can-
cer genomes with the downregulation of MMR genes [37], how-
ever, the impact of tumor hypoxia on tumor mutations is not well 
understood. This study showed that the majority of tumor hypox-
ia-driven mutation signatures resembled those of the APOBEC-re-
lated signatures of Sig.#2 and Sig.#13 in terms of trinucleotide fre-
quencies. Along with the correlation between the transcript levels 
of APOBEC and tumor hypoxia scores, this observation suggests 
that tumor hypoxia is associated with APOBEC activity and that 
the somatic mutations in hypoxic tumor genomes may be largely 
attributed to the APOBEC-mediated C-to-T transitions. As in the 
case of the SCNA-driven HR deficiency scores, mRNA-based tu-
mor hypoxia scores were concordant with the mutation signatures 
levels inferred from the mutation profiles of cancer genomes. This 
indicates that the mutation profiles can be used as proxies to infer 
various cancer genome-related features for mutation signa-
ture-based analysis. Although our exploratory study requires fur-
ther validation in an extended, validation cohort, the potential of 
mutation signatures to derive cancer hallmark features, such as HR 
deficiency and tumor hypoxia, may be extended to mutation sig-
nature-based tumor markers with potential clinical relevance. 
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