• Title/Summary/Keyword: palladium(II) catalyst

Search Result 15, Processing Time 0.025 seconds

Pd(II) Catalyzed Copolymerization of Styrene and CO in Quaternary Ammonium Ionic Liquids

  • Tian, Jing;Guo, Jin-Tang;Zhu, Cheng-Cai;Zhang, Xin;Xu, Yong-Shen
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.144-148
    • /
    • 2009
  • Poly(1-oxo-2-phenyltrimethylene) was synthesized by palladium-catalyzed copolymerization of styrene and carbon monoxide in quaternary ammonium ionic liquids. The $[Pd(bipy)_2][PF_6]_2$ compound had relatively more catalytic activity than $[Pd(bipy)_2][BF_4]_2$ in ionic liquids. The catalytic activity of palladium (II) composite catalyst was superior to the catalyst formed in situ from palladium acetate, 2,2-bipyridyl, and $X^-$ ($X^-=PF_6^-$, $BF_4^-$) in ionic liquids. The effects of the volume of ionic liquids, reaction time and benzoquinone content on the copolymerization were also described.

Addition Polymerization of 5-Norbornene-2-carboxylic Acid Esters Using Palladium Catalyst System: Synthesis of Monomers, Effect of Their Stereochemistry on Polymerization Behavior (Palladium 촉매를 이용한 5-Norbornene-2-carboxylic Acid Esters의 부가 중합: 단량체의 합성, 단량체의 Stereochemistry(Endo-, Exo-이성질체)가 고분자의 중합 거동에 미치는 영향)

  • Chung, Hae-Kang;Shim, Hyoug-Sub;Jeon, Seung-Ho;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.487-492
    • /
    • 2015
  • The effects of chemical structure of alkyl groups of norbornene carboxylic alkyl esters(methyl, octyl, 4-chlorobenzyl) and endo/exo ratios of norbornene monomers on activity of palladium catalyst and polymerization behavior were investigated. Norbornene ester monomers were synthesized from the reaction of 5-norborene-2-carboxylic acid and various alcohols. Polymerization catalyst, di-${\mu}$-chloro-bis(-methoxybicyclo[2,2,1]-hept-2-ene)palladium(II) (DCBMP), was synthesized according to the literature procedure and silver hexafluoroantimonate ($AgSbF_6$) was used as a conjugate anion source. Gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) were the principal techniques for polymer characterization and $^1H$ NMR spectroscopy was used for chemical structures determination of monomers and polymers. For all of the norbonene alkyl esters GPC data showed that when the amounts of endo isomers exceeded those of exo isomers decreased molecular weight polymers were obtained probably due to the decreased catalyst activity. Polymerizations were conducted by varying the monomer/catalyst mole ratios (100:1, 200:1, 300:1). When 300:1 monomer/catalyst ratio was employed it was possible to synthesize high molecular weight ($M_n=27500g/mol$), film forming polymer from exo-norbornene carboxylic acid octyl ester.

Carbonylative Cyclization of Unsaturated Carboxylic Acids by Palladium Complexes with Phosphines [III] Palladium (0, II)-Phosphine Complexes Catalyzed Cabonylation of Unsaturated Carboxylic Acids and It's Theoretical Studies (포스핀류가 배위된 팔라듐 착물에 의한 불포화카르복실산의 카르보닐화 고리반응 (제 3 보). 팔라듐 (0, II)-포스핀계 착물에 의한 불포화카르복실산의 카르보닐화 반응 및 그의 이론적 연구)

  • Myung-Ki Doh;Bong-Gon Kim;Maeng-Jun Jung;Young-Dae Song;Park Byung-Kak
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.10
    • /
    • pp.903-909
    • /
    • 1993
  • Reaction mechanism of palladium(0, II)-phosphines complexes catalyzed cyclocarbonylation for unsaturated carboxylic acid such as crotonic acid, methacrylic acid and 3-butenoic acid has been investigated by product analysis, molecular mechanics and extended Huckel molecular orbital method. Reaction of 3-butenoic acid with palladium(0, II)-phosphines catalyst gives palladium containing cycloester through intermediate palladium-olefin ${\pi}$ -complex in the catalytic carbonylation. Palladium(0, II)-phosphines complexes catalyze the cyclocarbonylation of 3-butenoic acid to give 3-methylsuccinic anhydride and glutaric anhydride. But ${\pi}$ -complexes with palladium(0, II)-phosphines and unsaturated carboxylic acids such as crotonic acid and methacrylic acid are not effective the catalytic cyclocarbonylation.

  • PDF

Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes

  • Kim, Jae Jin;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • Nanosized palladium particles were synthesized using palladium(II) chloride, trisodium citrate dihydrate, and sodium borohydride under stirring condition. Nanosized palladium-graphene composites were prepared from palladium nanoparticles, and graphene was enclosed with polyallylamine under stirring condition for 1 h followed by ultrasonication for 3 h. Nanosized palladium-graphene composites were heated in an electric furnace at $700^{\circ}C$ for 2 h and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectrophotometry was used to evaluate the nanosized palladium-graphene composites as a catalyst in the photocatalytic degradation of various organic dyes such as methylene blue, methyl orange, rhodamine B, and brilliant green under ultraviolet light at 254 nm.

Synthesis, Structures, and Catalytic Properties of Ionic Metallacyclodimeric Palladium(II) Complexes

  • Kim, Sung Min;Park, Kyung Hwan;Lee, Haeri;Moon, So Yun;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4069-4073
    • /
    • 2012
  • Metallacyclodimeric complexes of $[(Me_4en)Pd(L)]_2(ClO_4)_4$ ($Me_4en$ = N,N,N',N'-tetramethylethylenediamine; L = dimethylbis(4-pyridyl)silane (dmps), methylvinylbis(4-pyridyl)silane (mvps)) have been synthesized, and their structures have been characterized by X-ray single crystallography. The skeletal structures consist of one 20-membered metallamacrocycle, two 5-membered metallacycles, and four pyridyl groups. The local geometry around the palladium(II) ion approximates to a typical square planar arrangement with four nitrogen donors. Delicate difference in catalytic effects on hydrogenation was investigated based on the structure of catalyst and substrates.

Submicrospheres as Both a Template and the Catalyst Source. Silica Submicro-reactor Dotted with Palladium Nanoparticles as Catalysts

  • Kim, Sung Min;Noh, Tae Hwan;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1127-1130
    • /
    • 2013
  • Formation of the monodisperse submicrospheres consisting of ionic palladium(II) complexes, $[(Me_4en)Pd(L)]_2(X)_4$($Me_4en$ = N,N,N',N'-tetramethylethylenediamine; L = bis(4-(4-pyridylcarboxyl)phenyl)methane; $X^-=BF_4{^-}$ and $ClO_4{^-}$), has been carried out without any templates or additives. The submicrospheres were coated with silicates, and then calcined in air at $550^{\circ}C$ for 1 h, to efficiently form hollow-spherical $SiO_2$ submicro-reactors dotted with palladium(0) nanoparticles (PdNPs). That is, the submicrospheres act as both a template and a source of the palladium metal nanoparticles. The submicro-reactors containing nano-catalysts have been characterized by means of SEM, TEM, and XPS. Notably, the reactors were proved to be very effective for Suzuki-Miyaura cross-coupling and hydrogenation reactions.

Diastereoselective Synthesis of anti-1,2-Aminoalcohol by Palladium(II) Catalyzed Aza-Claisen Rearrangement

  • Yoon, Youn-Jung;Chan, Myung-Hee;Joo, Jae-Eun;Kim, Yong-Hyun;Oh, Chang-Young;Lee, Kee-Young;Lee, Yiu-Suk;Ham, Won-Hun
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.136-142
    • /
    • 2004
  • In this study, a highly diastereoselective synthesis of anti-1 ,2-aminoalcohol was explored starting from L-amino acids as chiral sources. The higher yield and diastereoselectivity was shown when the aza-Claisen rearranqement was performed with allylic trichloroacetimidate 6a in the presence of palldium(II) catalyst.

Palladium-Catalyzed Carbonylative Coupling of Aryl Iodide and Diethylmalonate (팔라듐 촉매를 이용한 요오드화 방향족 화합물과 Diethylmalonate 와의 CO 첨가 커플링반응)

  • Jin Il Kim;Kwang Hyek Lee;Tae Soon Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.530-537
    • /
    • 1989
  • Diethylbenzoylmalonates with various substituents were synthesized in moderately good yields through palladium-catalyzed carbonylative coupling of aryl iodide and diethylmalonate with carbon monoxide. Palladium-catalyzed carbonylative coupling reaction usually proceeded well in polar aprotic solvents in the presence of three equivalents of inorganic bases and palladium(II) catalyst. When the reaction was carried out under 10 atm pressure of carbon monoxide, the yield of diethylbenzoylmalonate derivatives was much better than that of reaction under atomspheric pressure of carbon monoxide.

  • PDF

Effect of surfactants on reductive degradation of Endosurfan I and II by ZVM (영가금속에 의한 Endosulfan I과 II의 환원분해에 미치는 계면활성제의 영향)

  • 김진영;김영훈;신원식;전영웅;송동익;최상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.187-190
    • /
    • 2002
  • Reductive dechlorination of endosulfans was studied with zero valent metals (ZVMs) and bimetals in aqueous batch reactors. The effect of surfactants was evaluated. Endosulfan was successfully dechlorinated with zero valent iron. However, a bimetal, palladium coated iron (Pd/Fe) showed a highly enhanced reactivity for both endosulfan I and II indicating palladium act as a dechlorination catalyst on the iron. The effect of surfactants on degradation with ZVM has been very controvertible. Variable concentration of a nonionic surfactant, Triton X-100 and an anionic surfactant, SDS were added into the reactor with ZVM. The reaction rates of endosulfan were increased with both surfactants. In the case of Triton X-100, the reaction rate was increased with the increasing surfactant concentration up to 400 mg/L. Addition of small amount of surfactant under the CMC, the reaction rate was increased. However, the enhancing effect was diminished when a higher concentration of surfactant (1,000 mg/L) was used. Current study implicate that the surfactant adsorbed on the metal surface might increase the surface concentration of endosulfan resulting in the increased reaction rate. However, partitioning of endosulfan into the micelle formed at the high concentration of surfactant diminish the enhancing effect by reducing the contact chance between target compound and the metal surface.

  • PDF