DOI QR코드

DOI QR Code

Addition Polymerization of 5-Norbornene-2-carboxylic Acid Esters Using Palladium Catalyst System: Synthesis of Monomers, Effect of Their Stereochemistry on Polymerization Behavior

Palladium 촉매를 이용한 5-Norbornene-2-carboxylic Acid Esters의 부가 중합: 단량체의 합성, 단량체의 Stereochemistry(Endo-, Exo-이성질체)가 고분자의 중합 거동에 미치는 영향

  • Chung, Hae-Kang (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Shim, Hyoug-Sub (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Jeon, Seung-Ho (Polyscientech Inc.) ;
  • Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Nam, Sung Woo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Jeon, Boong Soo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Young Jun (Department of Chemical Engineering, Sungkyunkwan University)
  • Received : 2014.10.16
  • Accepted : 2014.11.24
  • Published : 2015.05.25

Abstract

The effects of chemical structure of alkyl groups of norbornene carboxylic alkyl esters(methyl, octyl, 4-chlorobenzyl) and endo/exo ratios of norbornene monomers on activity of palladium catalyst and polymerization behavior were investigated. Norbornene ester monomers were synthesized from the reaction of 5-norborene-2-carboxylic acid and various alcohols. Polymerization catalyst, di-${\mu}$-chloro-bis(-methoxybicyclo[2,2,1]-hept-2-ene)palladium(II) (DCBMP), was synthesized according to the literature procedure and silver hexafluoroantimonate ($AgSbF_6$) was used as a conjugate anion source. Gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) were the principal techniques for polymer characterization and $^1H$ NMR spectroscopy was used for chemical structures determination of monomers and polymers. For all of the norbonene alkyl esters GPC data showed that when the amounts of endo isomers exceeded those of exo isomers decreased molecular weight polymers were obtained probably due to the decreased catalyst activity. Polymerizations were conducted by varying the monomer/catalyst mole ratios (100:1, 200:1, 300:1). When 300:1 monomer/catalyst ratio was employed it was possible to synthesize high molecular weight ($M_n=27500g/mol$), film forming polymer from exo-norbornene carboxylic acid octyl ester.

Palladium(II) 촉매를 이용한 norobornene carboxylic acid estsers의 중합 시 단량체의 알킬 작용기의 종류, endo/exo 비율이 촉매의 활성도 및 중합 특성에 미치는 영향을 조사하였다. Norbornene esters 단량체는 5-norborene-2-carboxylic acid와 다양한 알코올을 반응시켜 합성하였다. 중합 촉매로는 di-$\mu$-chloro-bis(-methoxybicyclo[2,2,1]-hept-2-ene)palladium(II)(DCBMP)를 합성하여 사용하였고, 짝음이온으로 실버 헥사플루오로안티모네이트($AgSbF_6$)를 이용하였다. 고분자의 분석을 위해 젤 투과 크로마토그래피(gel permeation chromatography, GPC), 열 중량 분석법(thermogravimetric analysis, TGA), 시차주사 열량측정법(differential scanning calorimetry, DSC), 화학구조 분석을 위해 $^1H$ NMR spectroscopy를 이용하였다. 분자량 분석 결과 모든 작용기의 경우 endo-이성체의 비율이 exo-이성체의 비율보다 높을 경우 촉매의 구조적 방해로 인하여 반응성이 감소됨을 보였다. 또한 단량체와 촉매의 비율이 중합 거동에 미치는 영향을 조사하기 위해 단량체와 촉매의 몰비율을 100:1, 200:1, 300:1로 변화시켜 실험을 진행하였으며, 이 때 exo-norbornene carboxylic acid octyl ester의 경우 300:1 촉매비에서 필름형성이 가능한 높은 분자량($M_n=27500g/mol$)의 고분자를 합성할 수 있었다.

Keywords

References

  1. J. P. Kennedy and H. S. Makiwski, J. Marcromol. Sci. Chem., A1, 345 (1967).
  2. N. G. Gaylord, A. B. Deshpande, B. M. Mandal, and M. Martan, J. Marcromol. Sci. Chem., A11, 1053 (1977).
  3. R. R Schrock, J. Feldman, L. F. Cannizzo, and R. H. Grubbs, Macromolecules, 20, 1172 (1987). https://doi.org/10.1021/ma00171a054
  4. V. Heroguez and M. Fontanile, J. Polym. Sci., A32, 1755 (1994).
  5. P. Schwab, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 108, 100 (1996).
  6. J. L. Burmaghim and G. S. Girolami, Organometallics, 18, 1923 (1999). https://doi.org/10.1021/om980434r
  7. B. L. Goodall, L. G. McIntosh III, and L. F. Rhodes, Makromol. Chem. Macromol. Symp., 89, 421 (1995). https://doi.org/10.1002/masy.19950890139
  8. A. Hennis, J. Polly, G. Long, and S. Sen, Organometallics, 20, 2802 (2001). https://doi.org/10.1021/om010232m
  9. J. Lipian, R. A. Mimna, J. C. Fondran, D. Yandulov, R. A. Shick, B. L. Goodall, and L. F. Rhodes, Marcromolecules, 35, 8969 (2002). https://doi.org/10.1021/ma0209287
  10. J. C. Ahn, S. H. Park, K. H. Lee, and K. H. Park, Polym. Korea, 27, 429 (2003).
  11. T. F. A. Haselwandel, W. Heitz, S. A. Kriigel, and J. H. Wendorff, Macromol. Chem. Phys., 197, 3435 (1996). https://doi.org/10.1002/macp.1996.021971029
  12. C. Janiak and P. G. Lassahn, J. Mol. Catal. A: Chem., 166, 193 (2001). https://doi.org/10.1016/S1381-1169(00)00475-1
  13. S. V. Mulpuri, J. Shin, B.-G. Shin, A. Greiner, and D. Y. Yoon, Polymer, 52, 4377 (2011). https://doi.org/10.1016/j.polymer.2011.07.019
  14. J. C. Ahn and K. H. Park, Polym. Korea, 28, 245 (2011).
  15. B. Liu, Y. Li, B.-G. Shin, D. Y. Yoon, I. Kim, L. Zhang, and W. Yan, J. Polym. Sci., Part A: Polym. Chem., 45, 3391 (2007). https://doi.org/10.1002/pola.22091
  16. K. Muller, Y. Jung, D. Y. Yoon, S. Agarwal, and A. Greiner, Macromol. Chem. Phys., 211, 1595 (2010). https://doi.org/10.1002/macp.200900647
  17. B. S. Heinz, F. P. Alt, and W. Heitz, Macromol. Rapid Commun., 19, 251 (1998).
  18. K. H. Kim, Y.-K. Han, S. U. Lee, S.-H. Chun, and J. H. Ok, J. Mol. Model., 9, 304 (2003). https://doi.org/10.1007/s00894-003-0132-2
  19. J. P. Mathew, A. Reinmuth, J. Mella, N. Swords, and W. Risse, Macromolecules, 29, 2755 (1996). https://doi.org/10.1021/ma9515285
  20. J. K. Funk, C. E. Andes, and A. Sen, Organometallics, 23, 1680 (2004). https://doi.org/10.1021/om049943l
  21. I. Cho and K.-S. Pyun, Yingyong Huaxue, 18, 296 (2001).
  22. C. Bergstrom, J. Ruotoistenmaaki, E. T. Aitola, and J. V. Seppala, J. Appl. Polym. Sci., 77, 1108 (2000). https://doi.org/10.1002/1097-4628(20000801)77:5<1108::AID-APP19>3.0.CO;2-X
  23. N. Seehof, C. Mehler, S. Breunig, and W. Risse, J. Mol. Cat., 76, 219 (1992). https://doi.org/10.1016/0304-5102(92)80160-I
  24. B. S. Heinz, W. Heitz, S. A. Krugel, F. Raubacher, and J. H. Wendorff, Acta Polym., 48, 385 (1997). https://doi.org/10.1002/actp.1997.010480906
  25. B. S. Heinz, F. P. Alt, and W. Heitz, Macromol. Rapid Commun., 19, 251 (1998).
  26. M. Green and R. I. Hancock, J. Chem. Soc. A., 2054 (1967).
  27. F. A. Cotton, Inorg. Synth., 13, 52 (1966).
  28. M. Kanao, A. Otake, K. Tsuchiya, and K. Ogino, Int. J. Org. Chem., 2, 26 (2012). https://doi.org/10.4236/ijoc.2012.21005