• Title/Summary/Keyword: pad-on-disk

Search Result 109, Processing Time 0.031 seconds

Effect of Diamond Abrasive Shape of CMP Conditioner on Polishing Pad Surface Control (CMP 컨디셔너의 다이아몬드 입자 모양이 연마 패드 표면 형상 제어에 미치는 영향)

  • Lee, Donghwan;Lee, Kihun;Jeong, Seonho;Kim, Hyungjae;Cho, Hanchul;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.330-336
    • /
    • 2019
  • Conditioning is a process involving pad surface scraping by a moving metallic disk that is electrodeposited with diamond abrasives. It is an indispensable process in chemical-mechanical planarization, which regulates the pad roughness by removing the surface residues. Additionally, conditioning maintains the material removal rates and increases the pad lifetime. As the conditioning continues, the pad profile becomes unevenly to be deformed, which causes poor polishing quality. Simulation calculates the density at which the diamond abrasives on the conditioner scratch the unit area on the pad. It can predict the profile deformation through the control of conditioner dwell time. Previously, this effect of the diamond shape on conditioning has been investigated with regard to microscopic areas, such as surface roughness, rather than global pad-profile deformation. In this study, the effect of diamond shape on the pad profile is evaluated by comparing the simulated and experimental conditioning using two conditioners: a) random-shaped abrasive conditioner (RSC) and b) uniform-shaped abrasive conditioner (USC). Consequently, it is confirmed that the USC is incapable of controlling the pad profile, which is consistent with the simulation results.

Tribological Analysis on the Contact Behaviors of Disk Brakes Due to Frictional Heatings -Cooling Effects By Vent Holes- (디스크 브레이크의 마찰열 접촉거동에 관한 트라이볼로지적 연구 - 벤트홀의 방열효과를 중심으로 -)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • Using a coupled thermal-mechanical analysis, the thermal distortion of the ventilated disk brakes has been investigated based on the air cooling effects during 15 braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

Numerical Study on the Thermal Distortions of Ventilated Disk Brakes Due to Air Cooling Effects (벤틸레이티드 디스크 브레이크에서 공냉효과가 열변형 거동에 미치는 영향에 관한 수치적 연구)

  • 조승현;이일권;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.332-338
    • /
    • 1999
  • A coupled thermal-mechanical analysis has been presented for the thermal distortions of the ventilated disk brakes during IS braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

  • PDF

Wear Loss Presumption of Motorcycle Disk Brake Using Regression Analysis (회귀분석을 이용한 모터싸이클 브레이크 디스크의 마멸량 예측)

  • Jeun, Hwan-Young;Bae, Hwo-Jun;Kim, Young-Hee;Ryu, Mi-Ra;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.156-161
    • /
    • 2007
  • The friction test using disk-on-pad type was carried out and regression analysis with friction parameters was applied fur wear loss presumption of motorcycle break disk. The wear loss has an effect on the frictional factor such as applied load, sliding speed, and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on wear loss of motorcycle break disk. From this study, the result was shown that the regression analysis equation containing 4 elements were constructed and this equation had a trust of 95% in wear loss presumption of motorcycle break disk. It is possible to apply for another automobile parts.

Experimental Study of Braking Friction and Wear Characteristics of Disk Brake (디스크 브레이크의 제동마찰 및 마멸특성에 관한 실험적 연구)

  • Kim Chung-Kyun;Lee Boung-Kwan;Kim Han-Goo
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.149-154
    • /
    • 2006
  • This paper presents the braking friction and wears on the rubbing surfaces of a friction pad-disk brake. In this study, four friction disk specimens are sampled from unused and used disks in which are taken from the disk brake system when the friction induced vibration and noise problems have been occurred during a braking period at a running period of 10,000 km, 20,000 km, and 30,000 km in random. The experimental results indicate that the tribological characteristics of an unused disk brake shows equal and stable as a friction coefficient and temperature distributions during a braking friction/wear test period including a total friction mode from the start to running periods. But the used disk brake shows unstable and uneven friction modes between an outside and inside rubbing surfaces of a disk brake in terms of a friction coefficient and wears. This may lead to a friction induced friction vibration and noise problems of a used disk brake.

Effect of the Microstructure of Gray Cast Iron Disk on Friction Characteristics (자동차용 브레이크 로터의 재료로 사용되는 회주철의 미세구조에 따른 마찰특성에 관한 연구)

  • Cho, Min-Hyung;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.240-246
    • /
    • 1999
  • The effect of microstructure of gray cast iron disk was investigated by using a pad-on-disk type friction tester. Three different rotors with different microstructures were studied in this work. They showed a pearlitic matrix, a ferritic matrix, and a martensitic structure, respectively. All of them have graphite flakes in common. Drag tests at different pressure and speed conditions were carried out to study friction stability, temperature rise during drags. The rotor containing pearlitic matrix showed lower values of friction coefficient, small amount of temperature rise, and less fading. The results showed that gray cast iron disk containing pearlitic matrix has good friction characteristics.

  • PDF

Thermal Stress Analysis for a Brake Disk considering Pressure Distribution at a Frictional Surface (마찰면의 압력 분포를 고려한 제동디스크의 열응력 해석)

  • Lee Y.M.;Park J.S.;Seok C.S.;Lee C.W.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.842-846
    • /
    • 2005
  • A brake disk and a pad are important parts that affect the braking stability of a railway vehicle. Especially, because a brake disk stops the vehicle using conversion of the kinetic energy to frictional energy, thermal fatigue cracks are generated by the cyclic thermal load, as frictional heat, on a frictional surface and these cracks cause the fracture of a brake disk. Therefore, many researches for the thermal stress must be performed to improve the efficiency of brake disk and ensure the braking stability. In this study, we performed the thermal stress analysis for a ventilated brake disk with 3-D analysis model. For that, we simplified the shape of a ventilated hole to minimize problems that could be occurred in analysis process. Thermal stress analysis was performed in case that pressure distributions on a frictional surface is constant and is not. To determine pressure distributions of irregular case, pressure distribution analysis for a frictional surface was carried out. Finally using the results that were obtained through pressure distribution analysis, we carried out thermal stress analysis of each case and investigated the results of thermal stress analysis.

  • PDF

A Study on Wear Motor cycle Disk Brake with Ventilated Disk Hole Number (이륜자동차 디스크 브레이크의 방열 홀 수에 따른 마멸량에 관한 연구)

  • Ryu M.R.;Juen H.Y.;Lee S.J.;Kim Y.H.;Park H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.215-216
    • /
    • 2006
  • The effect of manufacturing parameters on friction characteristics of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the frictional factor such as applied load, sliding speed, and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, the friction characteristics using design of experiment containing 3 elements were investigated for an optimal condition for the best motorcycle break system employing Full factorial design. From this study, the result was shown that the applied load in frictional factors was the most important, next to sliding speed, number of ventilated disk hole.

  • PDF

A Study on the Braking Characteristics for Some Non-Asbestos Kevlar Brake Pad Materials (비석면 케블라 마찰재의 제동특성에 관한 연구)

  • Chung, D.Y.;Chung, B.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.41-47
    • /
    • 1994
  • An optimal brake pad must have stable friction, low wear and least amount of squeal. In this study, the friction, wear and squeal behavior of some non-asbestos Kevlar materials have been evaluated experimentally. Four specimens with different formulations and a pin-on-disk machine were used for this study. To determine the role of each component in friction and squeal of a brake pad, statistical correlations have been obtained and discussed. The components tested were : Kevlar, Steel Powder, Barium Sulfate and fillers combined by Resin.

  • PDF

Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk (관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구)

  • Lee, Jong Seong;Kang, Bu Byoung;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.