• Title/Summary/Keyword: packing

Search Result 1,960, Processing Time 0.034 seconds

Performance Analysis of Urethane Packing in the Hydraulic Breaker by a Finite Element Method (유한요소해석을 이용한 유압브레이커용 우레탄 패킹의 성능분석)

  • Shin, Hyun Woo;Hong, Jong Woo;Choi, Yi Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • Performances of urethane packing in the hydraulic breaker were analyzed using a finite element method. Because of high temperature and high pressure in the hydraulic breaker, it is better to use urethane rather than rubber as a packing material. We obtained the physical properties of urethane at elevated temperature by the tensile test. We analyzed buffer seal and U-packing maintaining the pressure and preventing oil leakage. Deformation, stress distribution, contact length, contact pressure of packing at each pressure step were obtained using finite element analysis. As the temperature increases, stress and contact force tend to decrease at low pressure. As the gap between piston and cylinder increases, contact length and contact forces decrease. Consequently, it is possible to design the packing section using these analyses, and construct a system to predict the possibility of oil leakage in the hydraulic breaker.

Effect of Glass Fiber Contents on the Tensile Strength in Injection Molding Process (사출성형공정에서 유리섬유함유량이 인장강도에 미치는 영향)

  • 김영수;김인관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • The main target of this research is investigating the relations between mechanical properties and injection conditions, like injection pressure, packing pressure and packing time for various contents ratio of glass fiber and resin. In general idea, high injection pressure produces high strength of molded parts as a monotonic function. but it was revealed that high pressure does not make high strength directly through various experiments of injection molding. In this experiments, PA66 was selected as resin and Glass Fiber was selected as reinforcing fiber Fiber reinforcement was controlled, as 14%, 25%, 33%, 44% of total volume and packing pressure was divided 55%, 65%, 75%, 85% of reference pressure, i.e. 100% equal to 1400kgf/$\textrm{cm}^2$. Finally, tensile testing was executed for injected test specimen. Optimum results based on authors' experiments have been obtained under conditions of 25% and 33% of glass fiber contents. Tensile strength rather depends on the packing pressure and packing time than injection pressure. Especially almost equal value of tensile strength was obtained for various percentage of packing and injection pressure as 65%, 75% and 85% of reference pressure.

  • PDF

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong;Hauer, Bernhard;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

Analysis on Hot Plate Welding of Thermoplastic Elastomer Packing (열가소성 엘라스토머 패킹의 열융착 해석)

  • Kim, Min Ho;Lee, Yong Tae;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.477-482
    • /
    • 2016
  • Airtight containers have been widely used in many industries and household. They need a packing for sealing between the inside and outside. Previous packing materials have some drawbacks like stench, stickiness, and difficulty of applying to automated manufacturing systems. So, a new packing material which is harmless and suitable for automation is needed. This study performed a hot plate welding process of thermoplastic elastomer (TPE) as the packing material. The hot plate welding process included a phase change process of solidification and melting. The porosity-enthalpy method was adopted in order to simulate phase change problems. The TPE showed non-Newtonian fluid characteristics during the melting process. Since properties of SEBS are not well-defined, we established TPE properties by observing the melting behavior of TPE. In order to find an optimized condition, a parametric study including packing thickness, shapes, hot plate temperature, and thermal resistance, was conducted.

3D Visualization of Packing Behavior of Charge Material (장입재 충전 거동의 3차원 시각화)

  • Sang-Hwan Lee
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.347-357
    • /
    • 2022
  • In this study, 3D visualization of the packing behavior of the charge material in a foundry was attempted. It was simulated based on the practical conditions of the charge material and the melting furnace. It was confirmed whether the 3D visual simulation realistically implements the packing behavior of the manufacturing site. The realistic packing state by the 3D visual simulation was compared with the ideal packing state. It was analyzed in which case the difference between the two packing states occurred. The advantages of applying the 3D visual simulation to the manufacturing process were investigated, and various application plans in the casting industry were proposed.

Prediction of collection performance for a granular bed filter filled with various shapes of packing material (다양한 형상의 충전물로 채워진 충전층 집진기의 집진성능 예측)

  • Jae-Hyun Park;Myong-Hwa Lee
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.145-154
    • /
    • 2023
  • Granular bed filters are widely used to remove particulate matter in flue gas and are filled with various shapes of packing material. The packing material plays an important role in determining the overall collection performance, such as pressure drop and collection efficiency. The pressure drop of a granular bed filter has been calculated using the Ergun equation, while the collection efficiency has been predicted using the log-penetration equation based on the single sphere theory. However, a prediction equation of collection efficiency for a granular bed filter filled with non-spherical packing materials has not been suggested yet. Therefore, in this study, three different shapes of packing materials (sphere, cylinder, and irregular) were prepared to propose a prediction equation. The pressure drop and collection efficiency in a granular bed filter filled with each shape of packing material were measured experimentally and compared with theoretically predicted values. We found that experimentally measured pressure drops matched well with values theoretically predicted using the Ergun equation considering the shape factor. However, experimental collection efficiencies were higher than theoretical ones predicted by the log-penetration equation using the single sphere theory. We modified the log-penetration equation by employing a shape factor and found a good relationship between experimental and theoretical collection efficiencies.

The Usefulness of Airway Tube Merocel® on Treatment of Nasal Bone Fracture (비골골절치료에서 기도 튜브 머로셀®의 유용성)

  • Jung, Yun Joo;Choi, Young Woong;Nam, Sang Hyun;Yoon, Gil Young
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • Purpose: Nasal packing materials are almost inserted at the end stage of closed reduction of nasal bone for postoperative bleeding control and stabilization of nasal bone. Conventionally, vaseline gauze was used for packing of nasal cavity. These days, Surgeons have tried to apply $Merocel^{(R)}$ into the nasal cavity more easily. It is difficult for patients to continue keeping the nasal packs for more than a week due to breathing difficulty. Moreover, nasal packing itself can also cause headache, dry mouth, stuffiness, etc. Methods: We performed a prospective study from March 1, 2008 to July 31, 2008. One hundred patients were divided into "$Merocel^{(R)}$ packing group" and "$Merocel^{(R)}$ and Airway Tube $Merocel^{(R)}$ packing group". Using two kinds of materials to each group after closed reduction, we observed and compared the amount of bleeding between two groups. We recorded patient's uncomfortable symptoms which were divided into four groups each 6, 24, 48 hours after nasal packing. Results: The result of the bleeding amount of Air Tube $Merocel^{(R)}$ group after 6 hours of nasal packing is that 3 people belong to mild group, 38 people moderate group, and 9 people severe group. After 6 hours of nasal packing, 11 patients have no complains. 16 patients were mild, 21 patients were moderate, 2 patients were severe. After 24 hours of nasal packing, no complain(18 patients), mild(24 patients), moderate(6 patients), severe(0 patient). After 48 hours of nasal packing, no complain(25 patients), mild(20 patients), moderate(5 patients), severe(0 patient). Conclusion: Regarding the amount of bleeding, there are no difference between two groups. In case of Air Tube $Merocel^{(R)}$ group, patient's discomfort is gradually improved after 24 hours of nasal packing, After 48 hours of nasal packing, most of the patients do not experience headache, dry mouth, stuffiness, etc. Therefore, Air Tube $Merocel^{(R)}$ can be useful for bleeding control. Moreover, it helps patients to breathe through nose more easily and reduce discomfort.

The Effects of DO, HRT, and Media Packing Ratio on Nitrogen Removal Efficiency in BCM-ASR System (고정상 담체를 충전한 활성슬러지 공정에서 DO농도와 HRT 및 담체 충전율 변화가 질소 제거효율에 미치는 영향)

  • Whang, Gye-Dae;Han, Bong-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.659-669
    • /
    • 2008
  • Two sets of four parallel activated sludge reactors (ASRs) maintaining an MLSS of 3000 mg/L were operated to investigate the effect of DO, HRTs and bio-contact media (BCM) packing ratios on the removal efficiency of organic matters and nitrogen. Packing ratios of BCM to BCM-ASR systems 1, 2, 3, and 4 were 0% (suspended growth only), 10%, 15% and 20%, respectively. All systems were operated at an HRT of 4 hr, 6 hr, and 8 hr, respectively; DO concentration was maintained 0.5~1.0 mg/L and 1.5~2.0 mg/L for each HRT condition. In terms of TSS, TCODcr and SCODcr removal efficiency, all systems had a similar level of the removal efficiency under varied HRTs, and DO. But organic removal efficiency of systems with BCM was approximately 3~5% higher than systems without BCM at the same HRT and the DO. About the nitrification efficiency, with high DO (1.5~2.0 mg/L), as HRT (4 hr, 6 hr, 8 hr) or BCM packing ratio increased, the slight increment of nitrification efficiency was observed. However, under the low DO (0.5~1.0 mg/L), increase of BCM packing ratio and HRT resulted in large increase of the nitrification efficiency. At the same HRT and BCM packing ratio, the nitrification efficiency increased greatly with up to 15% as DO increased. When the HRT increased from 4hr to 8hr, the denitrification efficiency slightly increased by 5~10% only, under all DO conditions. Systems with BCM had higher denitrification efficiency, ranged 62.7~91.1% than systems without BCM showed 32.1~65.6%. And the increase in BCM packing ratio from 10% to 20% resulted in about 14~16% denitrification efficiency increment. BCM packing ratio showed great effect on the denitrification. The increase of the DO (from 0.5~1.0 mg/L to 1.5~2.0 mg/L) at the same HRT and BCM packing ratio resulted in slight decrease of denitrification efficiency with up to 7% for systems with BCM. But for systems without BCM, the denitrification efficiency decreased with up to 28%. In all system, the denitrification efficiency had more influence on the TN removal efficiency than nitrification efficiency. So, BCM packing ratio (0%, 10%, 15%, 20%) has greater effect on the TN removal than HRT and DO. The TN removal efficiency increased as packing ratio of BCM increased with up to 45%. As a result, the highest TN removal efficiency was observed 73.7% at the condition showed the highest denitrification efficiency that DO of 0.5~1.0 mg/L, an HRT of 8 hr, and 20% of BCM packing ratio was maintained.

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

CANTOR DIMENSION AND ITS APPLICATION

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • We defined Cantor dimensions of a perturbed Cantor set, and investigated a relation between these dimensions and Hausdorff and packing dimensions of a perturbed Cantor set. In this paper, we introduce another expressions of the Cantor dimensions. Using these, we study some informations which can be derived from power equations induced from contraction ratios of a perturbed Cantor set to give its Hausdorff or packing dimension. This application to a deranged Cantor set gives us an estimation of its Hausdorff and packing dimensions, which is a generalization of the Cantor dimension theorem.