Browse > Article
http://dx.doi.org/10.4014/jmb.1207.07057

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid  

Li, Xuan Zhong (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Hauer, Bernhard (Institute of Technical Biochemistry, University of Stuttgart)
Rosche, Bettina (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.2, 2013 , pp. 195-204 More about this Journal
Abstract
While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.
Keywords
Biofilm; structured packing; trickle-bed reactor; biocatalysis; Pseudomonas; ethylene glycol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, X., Y. K. Chung, S. T. Yang, and A. E. Yousef. 2005. Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem. 40: 13-24.   DOI   ScienceOn
2 Matz, C., D. McDougald, A. M. Moreno, P. Y. Yung, F. H. Yildiz, and S. Kjelleberg. 2005. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 102: 16819-16824.   DOI   ScienceOn
3 Mears, D. E. 1974. The role of liquid holdup and effective wetting in performance of trickle-bed reactors. Adv. Chem. Ser. 133: 218-228.
4 Qureshi, N., B. A. Annous, T. C. Ezeji, P. Karcher, and I. S. Maddox. 2005. Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microb. Cell Fact. 4: 24.   DOI   ScienceOn
5 Nicolella, C., M. C. M. van Loosdrecht, and S. J. Heijnen. 2000. Particle-based biofilm reactor technology. Trends Biotechnol. 18: 312-320.   DOI   ScienceOn
6 Nigam, K. D. P. and A. Kundu. 2005. Hydrodynamics of trickle-bed reactors. In S. Lee (ed.). Encyclopedia of Chemical Processing. Taylor & Francis, London.
7 Pangarkar, K., T. J. Schildhauer, J. R. van Ommen, J. Nijenhuis, F. Kapteijn, and J. A. Moulijn. 2008. Structured packings for multiphase catalytic reactors. Ind. Eng. Chem. Res. 47: 3720-3751.   DOI   ScienceOn
8 Rosche, B., X. Z. Li, B. Hauer, A. Schmid, and K. Buehler. 2009. Microbial biofilms: A concept for industrial catalysis? Trends Biotechnol. 27: 636-643.   DOI   ScienceOn
9 Ryhiner, G., B. Birou, and H. Gros. 1992. The use of submerged structured packings in biofilm reactors for wastewater treatment. Water Sci. Technol. 26: 723-731.
10 Satterfield, C. N. 1975. Trickle-bed reactors. AlChE J. 21: 209-228   DOI   ScienceOn
11 Segers, P., M. Vancanneyt, B. Pot, U. Torck, B. Hoste, D. Dewettinck, et al. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol. 44: 499-510.   DOI   ScienceOn
12 Spiegel, L. and W. Meier. 2003. Distillation columns with structured packings in the next decade. Chem. Eng. Res. Des. 81: 39-47.   DOI   ScienceOn
13 Wei, G., X. Yang, W. Zhou, J. Lin, and D. Wei. 2009. Adsorptive bioconversion of ethylene glycol to glycolic acid by Gluconobacter oxydans DSM 2003. Biochem. Eng. J. 47: 127-131   DOI   ScienceOn
14 Stewart, P. S. and M. J. Franklin. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6: 199-210.   DOI   ScienceOn
15 Sutherland, I. W. 2001. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology 147: 3-9.   DOI
16 Tirado-Acevedo, O., M. S. Chinn, and A. M. Grunden. 2010. Production of biofuels from synthesis gas using microbial Aatalysts, pp. 57-92. Advances in Applied Microbiology, Vol.70. Elsevier Academic Press Inc, San Diego.
17 Werner, E., F. Roe, A. Bugnicourt, M. J. Franklin, A. Heydorn, S. Molin, B. Pitts, and P. S. Stewart. 2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 70: 6188-6196.   DOI   ScienceOn
18 Weuster-Botz, D., A. Aivasidis, and C. Wandrey. 1993. Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II: Process development for the fermentation of hydrolysed B-starch without sterilization. Appl. Microbiol. Biotechnol. 39: 685-690.   DOI
19 Xu, K. D., P. S. Stewart, F. Xia, C. T. Huang, and G. A. McFeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64: 4035-4039.
20 Battista, J. and U. Bohm. 2003. Mass transfer in trickle-bed reactors with structured packing. Chem. Eng. Technol. 26: 1061-1067.   DOI   ScienceOn
21 Breijer, A. A. J., J. Nijenhuis, and R. van Ommen. 2008. Prevention of flooding in a countercurrent trickle-bed reactor using additional void space. Chem. Eng. J. 138: 333-340.   DOI   ScienceOn
22 Drenkard, E. and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740-743.   DOI   ScienceOn
23 Cho, H. Y., A. E. Yousef, and S. T. Yang. 1996. Continuous production of pediocin by immobilized Pediococcus acidilactici P02 in a packed-bed bioreactor. Appl. Microbiol. Biotechnol. 45: 589-594.   DOI   ScienceOn
24 Conlon, K. M., H. Humphreys, and J. P. O'Gara. 2004. Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J. Bacteriol. 186: 6208-6219.   DOI   ScienceOn
25 Gross, R., K. Lang, K. Buhler, and A. Schmid. 2010. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol. Bioeng. 105: 705-717.
26 Crueger, W. and A. Crueger. 1990. Acetic acids, pp. 134-147. In T. D. Brock (ed.). Biotechnology: A Textbook of Industrial Microbiology. Science Tech. Publishers, Sunderland, MA, USA.
27 Frank, H. J. W., J. A. M. Kuipers, G. F. Versteeg, and W. P. M. Van Swaaij. 1999. The performance of structured packings in trickle-bed reactors. Chem. Eng. Res. Des. 77: 567-582.   DOI   ScienceOn
28 Gross, R., B. Hauer, K. Otto, and A. Schmid. 2007. Microbial biofilms: New catalysts for maximizing productivity of longterm biotransformations. Biotechnol. Bioeng. 98: 1123-1134.   DOI   ScienceOn
29 Halan, B., A. Schmid, and K. Buchler. 2010. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol. Bioeng. 106: 516-527.   DOI   ScienceOn
30 Halan, B., A. Schmid, and K. Buehler. 2011. Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120 Delta C catalytic biofilms. Appl. Environ. Microbiol. 77: 1563-1571.   DOI   ScienceOn
31 Hickey, R., R. Datta, S. P. Tsai, and R. Basu. 2008. Membrane supported bioreactor for conversion of syngas components to liquid products. US patent US20080305539.
32 Hekmat, D., R. Bauer, and J. Fricke. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116.   DOI   ScienceOn
33 Hekmat, D., R. Bauer, and V. Neff. 2007. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 42: 71-76.   DOI   ScienceOn
34 Hekmat, D., A. Feuchtinger, M. Stephan, and D. Vortmeyer. 2004. Biofilm population dynamics in a trickle-bed bioreactor used for the biodegradation of aromatic hydrocarbons from waste gas under transient conditions. Biodegradation 15: 133-144   DOI   ScienceOn
35 Kreutzer, M. T., F. Kapteijn, and J. A. Moulijn. 2006. Shouldn't catalysts shape up? Structured reactors in general and gas-liquid monolith reactors in particular. Catal. Today 111: 111-118.   DOI   ScienceOn
36 Iliuta, I. and F. Larachi. 2004. Biomass accumulation and clogging in trickle-bed bioreactors. AlChE J. 50: 2541-2551.   DOI   ScienceOn
37 Kataoka, M., M. Sasaki, A. Hidalgo, M. Nakano, and S. Shimizu. 2001. Glycolic acid production using ethylene glycoloxidizing microorganisms. Biosci. Biotechnol. Biochem. 65: 2265-2270.   DOI   ScienceOn
38 Koh, K. S., K. W. Lam, M. Alhede, S. Y. Queck, M. Labbate, S. Kjelleberg, and S. A. Rice. 2007. Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J. Bacteriol. 189: 119-130.   DOI   ScienceOn
39 Lane, D. J. 1991. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, pp. 133. In E. Stackebrandt and M. Goodfellow (eds.). Modern Microbiological Methods. John Wiley & Sons, Chichester, UK.
40 Li, X. Z., J. Klebensberger, and B. Rosche. 2010. Effect of gcl, glcB, and aceA disruption on glyoxylate conversion by Pseudomonas putida JM37. J. Microbiol. Biotechnol. 20: 1006-1010.   DOI   ScienceOn
41 Lazarova, V. and J. Manem. 2000. Innovative biofilm treatment technologies for water and wastewater treatment, pp. 159-206. In J. D. Bryers (ed.). Biofilm II: Process Analysis and Applications. Wiley-Liss Press, New York.
42 Lewis, V. P. and S. T. Yang. 1992. Continuous propionic-acid fermentation by immobilized Propionibacterium-Acidipropionici in a novel packed-bed bioreactor. Biotechnol. Bioeng. 40: 465-474   DOI
43 Li, X. Z., B. Hauer, and B. Rosche. 2007. Single-species microbial biofilm screening for industrial applications. Appl. Microbiol. Biotechnol. 76: 1255-1262.   DOI   ScienceOn
44 Li, X. Z., J. S. Webb, S. Kjelleberg, and B. Rosche. 2006. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. Appl. Environ. Microbiol. 72: 1639-1644.   DOI   ScienceOn