• Title/Summary/Keyword: packet classification

Search Result 100, Processing Time 0.048 seconds

Bitmap Intersection Lookup (BIL);A Packet Classification's Algorithm with Rules Updating

  • Khunkitti, Akharin;Promrit, Nuttachot
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.767-772
    • /
    • 2005
  • The Internet is a packet switched network which offers best-effort service, but current IP network provide enhanced services such Quality of Services, Virtual Private Network (VPN) services, Distribute Firewall and IP Security Gateways. All such services need packet classification for determining the flow. The problem is performing scalable packet classification at wire speeds even as rule databases increase in size. Therefore, this research offer packet classification algorithm that increase classifier performance when working with enlarge rules database by rearrange rule structure into Bitmap Intersection Lookup (BIL) tables. It will use packet's header field for looking up BIL tables and take the result with intersection operation by logical AND. This approach will use simple algorithm and rule structure, it make classifier have high search speed and fast updates.

  • PDF

Hierarchical Binary Search Tree (HBST) for Packet Classification (패킷 분류를 위한 계층 이진 검색 트리)

  • Chu, Ha-Neul;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3B
    • /
    • pp.143-152
    • /
    • 2007
  • In order to provide new value-added services such as a policy-based routing and the quality of services in next generation network, the Internet routers need to classify packets into flows for different treatments, and it is called a packet classification. Since the packet classification should be performed in wire-speed for every packet incoming in several hundred giga-bits per second, the packet classification becomes a bottleneck in the Internet routers. Therefore, high speed packet classification algorithms are required. In this paper, we propose an efficient packet classification architecture based on a hierarchical binary search fee. The proposed architecture hierarchically connects the binary search tree which does not have empty nodes, and hence the proposed architecture reduces the memory requirement and improves the search performance.

Scalable Packet Classification Algorithm through Mashing (Hashing을 사용한 Scalable Packet Classification 알고리즘 연구)

  • Heo, Jae-Sung;Choi, Lynn
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.113-116
    • /
    • 2002
  • It is required to network to make more intelligent packet processing and forwarding for increasing bandwidth and various services. Classification provides these intelligent to network which is acquired by increasing number of rules in classification rule set. In this Paper, we propose a classification algorithm efficient to scalable rule set ahead as well as Present small rule set. This algorithm has competition to existing methods by performance and advantage that it is mixed with another algorithm because il does not change original shape of rule set.

  • PDF

Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

  • Lim, Hysook;Lee, Nara;Lee, Jungwon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.27-38
    • /
    • 2017
  • Packet classification is one of the essential functionalities of Internet routers in providing quality of service. Since the arrival rate of input packets can be tens-of-millions per second, wire-speed packet classification has become one of the most challenging tasks. While traditional packet classification only reports a single matching result, new network applications require multiple matching results. Ternary content-addressable memory (TCAM) has been adopted to solve the multi-match classification problem due to its ability to perform fast parallel matching. However, TCAM has a fundamental issue: high power dissipation. Since TCAM is designed for a single match, the applicability of TCAM to multi-match classification is limited. In this paper, we propose a cost- and energy-efficient multi-match classification architecture that combines TCAM with a tuple space search algorithm. The proposed solution uses two small TCAM modules and requires a single-cycle TCAM lookup, two SRAM accesses, and several Bloom filter query cycles for multi-match classifications.

A Smart Set-Pruning Trie for Packet Classification (패킷 분류를 위한 스마트 셋-프루닝 트라이)

  • Min, Seh-Won;Lee, Na-Ra;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1285-1296
    • /
    • 2011
  • Packet classification is one of the basic and important functions of the Internet routers, and it became more important along with new emerging application programs requiring real-time transmission. Since packet classification should be accomplished in line-speed on each incoming input packet for multiple header fields, it becomes one of the challenges in designing Internet routers. Various packet classification algorithms have been proposed to provide the high-speed packet classification. Hierarchical approach achieves effective packet classification performance by significantly narrowing down the search space whenever a field lookup is completed. However, hierarchical approach involves back-tracking problem. In order to solve the problem, set-pruning trie and grid-of-trie algorithms are proposed. However, the algorithm either causes excessive node duplication or heavy pre-computation. In this paper, we propose a smart set-pruning trie which reduces the number of node duplication in the set-pruning trie by the simple merging of the lower-level tries. Simulation result shows that the proposed trie has the reduced number of copied nodes by 2-8% compared with the set-pruning trie.

Hierarchical Priority Trie for Efficient Packet Classification (효율적인 패킷 분류를 위한 계층 우선순위 트라이)

  • Chu, Ha-Neul;Lim, Hye-Sook
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.15-16
    • /
    • 2007
  • In order to provide value-added services, next generation routers should perform packet classification for each incoming packet at wire-speed. In this paper, we proposed hierarchical priority trio (Hptrie) for packet classification. The proposed scheme improves the search performance and the memory requirement by replacing empty internal nodes in ordinary hierarchical trio with priority nodes which are the nodes including the highest priority rule among sub-trie nodes.

  • PDF

Packet Loss Concealment Algorithm Based on Robust Voice Classification in Noise Environment (잡음환경에 강인한 음성분류기반의 패킷손실 은닉 알고리즘)

  • Kim, Hyoung-Gook;Ryu, Sang-Hyeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.75-80
    • /
    • 2014
  • The quality of real-time Voice over Internet Protocol (VoIP) network is affected by network impariments such as delays, jitters, and packet loss. This paper proposes a packet loss concealment algorithm based on voice classification for enhancing VoIP speech quality. In the proposed method, arriving packets are classified by an adaptive thresholding approach based on the analysis of multiple features of short signal segments. The excellent classification results are used in the packet loss concealment. Additionally, linear prediction-based packet loss concealment delivers high voice quality by alleviating the metallic artifacts due to concealing consecutive packet loss or recovering lost packet.

Parallel Multiple Hashing for Packet Classification

  • Jung, Yeo-Jin;Kim, Hye-Ran;Lim, Hye-Sook
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.171-174
    • /
    • 2004
  • Packet classification is an essential architectural component in implementing the quality-of-service (QoS) in today's Internet which provides a best-effort service to ail of its applications. Multiple header fields of incoming packets are compared against a set of rules in packet classification, the highest priority rule among matched rules is selected, and the packet is treated according to the action of the rule. In this Paper, we proposed a new packet classification scheme based on parallel multiple hashing on tuple spaces. Simulation results using real classifiers show that the proposed scheme provides very good performance on the required number of memory accesses and the memory size compared with previous works.

  • PDF

Cross-Product Algorithm Implementation and Performance Evaluation for Packet Classification (Packet Classification을 위한 Cross-Product 알고리즘 구현과 성능평가)

  • Kang, Kil-Soo;Choi, Kyung-Hee;Jung, Gi-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.1077-1080
    • /
    • 2003
  • 본 연구는 룰들의 각 필드들을 index하여 곱한 cross-product 테이블을 이용한 packet classification 알고리즘에 대해 연구하고 그 것의 성능을 평가하고 분석한다. 현재 Packet Classification은 Packet Filtering, Policy Routing, Accounting & Billing, Traffic Rate Limiting, Traffic Shaping, 등등의 서비스를 위한 가장 핵심적인 작업이다. 그러나 이들을 빠르게 서비스하는 알고리즘은 아직 존재하지 않는다. 단지 하드웨어 TCAM 을 이용해서 작은 룰들에 대한 처리만이 어느 정도 가능한 실정이다. 이에 본 연구는 소프트웨어를 이용한 cross-product 알고리즘의 효용성을 가늠하고자 연구하고 이를 실제 구현해 평가하고자 한다.

  • PDF

Two-dimensional Binary Search Tree for Packet Classification at Internet Routers (인터넷 라우터에서의 패킷 분류를 위한 2차원 이진 검색 트리)

  • Lee, Goeun;Lim, Hyesook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.21-31
    • /
    • 2015
  • The Internet users want to get real-time services for various multi-media applications. Network traffic rate has been rapidly increased, and data amounts that the Internet has to carry have been exponentially increased. A packet is the basic unit in transferring data at the Internet, and packet classification is one of the most challenging functionalities that routers should perform at wire-speed. Among various known packet classification algorithms, area-based quad-trie (AQT) algorithm is one of the efficient algorithms which can lookup five header fields simultaneously. As a representative space decomposition algorithm, the AQT requires a small amount of memory in storing classification rules, but it does not provide high-speed classification performance. In this paper, we propose a new packet classification algorithm by applying a binary search for the codewords of the AQT to overcome the issue of the AQT. Throughout simulation, it is shown that the proposed algorithm provides a better performance than the AQT in the number of rule comparisons with each input packet.