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Abstract: Packet classification is one of the essential functionalities of Internet routers in providing 

quality of service. Since the arrival rate of input packets can be tens-of-millions per second, wire-

speed packet classification has become one of the most challenging tasks. While traditional packet 

classification only reports a single matching result, new network applications require multiple 

matching results. Ternary content-addressable memory (TCAM) has been adopted to solve the 

multi-match classification problem due to its ability to perform fast parallel matching. However, 

TCAM has a fundamental issue: high power dissipation. Since TCAM is designed for a single 

match, the applicability of TCAM to multi-match classification is limited. In this paper, we propose 

a cost- and energy-efficient multi-match classification architecture that combines TCAM with a 

tuple space search algorithm. The proposed solution uses two small TCAM modules and requires a 

single-cycle TCAM lookup, two SRAM accesses, and several Bloom filter query cycles for multi-

match classifications.      
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1. Introduction 

In designing an efficient packet-forwarding engine, 

packet classification is an essential prerequisite for routers 

when providing the different levels of service required by 

various Internet applications [1]. Packet classification 

determines the class of each packet using a set of header 

fields so that routers process the packets using the service 

defined for the class of each packet [2-24].  

Most traditional applications require longest prefix or 

highest priority matching. However, the multi-match 

classification concept is becoming a major research item 

because of the increasing need for network security from 

systems such as network intrusion detection or worm 

detection, or in new application programs, such as load 

balancing and packet-level accounting [5-14]. As a 

network intrusion detection system (NIDS) example, a 

packet may match multiple rule headers, and related rule 

options for all the matching rule headers need to be 

identified in order to be checked later. For accounting, 

multiple counters may need to be updated for a given 

packet, and hence multi-match classification is necessary 

in order to identify relevant counters for each packet [11]. 

To provide wire-speed packet forwarding, IP address 

lookup and packet classification functions are designed 

using application-specific integrated circuits (ASICs) with 

off-chip ternary content-addressable memory (TCAM) 

storing prefix sets or rule databases [5]. Using TCAM is 

the best solution for providing single-cycle operation. 

However, the applicability of TCAM is restricted by 

several intrinsic issues. The primary issue is huge power 

consumption. TCAM consumes 150 times more power per 

bit than static random access memory (SRAM). TCAM 

consumes around 30 to 40 percent of the total line card 

power [6, 7]. When line cards are stacked together, TCAM 

imposes a high cost on the cooling system. TCAM also 

costs about 30 times more per bit of storage than double 

data rate (DDR) SRAM. TCAM’s power consumption is 

directly related to the number of TCAM accesses, and 

grows linearly with the number of entries searched in 

parallel [12]. In order to be energy- and cost-efficient, 

TCAM-based solutions must use an economic TCAM size 

and perform a limited number of TCAM lookups for each 

packet. Studies have been conducted into many different 
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solutions, such as reducing TCAM size, reducing the 

number of entries activated when a lookup is performed, or 

limiting the number of TCAM lookups required for each 

operation.  

Another issue is related to port ranges in the 

classification field. A port range has to be converted into 

multiple prefixes, and hence, multiple TCAM entries are 

needed to store a rule possessing port-range fields. The 

third issue is that TCAM is not directly applicable to a 

multi-match problem, since it was designed for a single 

best match. In applying TCAM to the multi-match problem, 

several different approaches have been proposed, but most 

of these approaches have their own issues.  
Various algorithms have been developed to perform 

packet classification without using TCAM [15-24]. Among 

these algorithmic approaches, tuple space–based [15, 16] 

or decision tree–based [17, 18] algorithms provide multi-

match packet classification at the same time as single best-

match packet classification. 

The purpose of this paper is to present a power-

efficient multi-match packet classification architecture. We 

focus on two issues related to the multi-match 

classification problem. TCAM produces a single best 

match, and TCAM consumes a great deal of power. It is 

necessary to have a general solution that works for both 

single-match and multi-match problems using TCAM. 

Therefore, changing TCAM hardware to produce multiple 

matches is not a viable option. Our approach follows the 

algorithmic approach, combining a tuple space–based 

algorithm with TCAM. These improvements come at the 

cost of multiple small SRAM modules that need to be 

accessed in parallel; however, this cost is inconsequential, 

given that SRAM is inexpensive and uses very small 

amounts of power. 

This paper is organized as follows: Section 2 defines 

the packet classification problem. Section 3 presents 

related work, such as TCAM-based multi-match packet 

classification structures, tuple space–based algorithms, and 

Bloom filter theory. Section 4 describes the proposed 

multi-match packet classification architecture. Section 5 

discusses simulation results and a performance analysis, 

and Section 6 concludes the paper. 

2. Packet Classification Problem  

Header fields used in packet classification usually 

include source IP address, destination IP address, source 

port number, destination port number, and protocol type. 

Let { }1 2
, , ,

N
R R R=R ⋯  represent a classifier where 

( )1,
i
R i N= ⋯  is a rule, and N  is the number of rules. 

If each rule, 
i
R , has α  attribute fields and one directive 

field, then ( )1 2
, , , ,

i i i i i
R R R R A

α
= ⋯  where  (j

i
R j =  

1, , )α⋯  is the specification on the j
th
 field. Each field, 

,j
i
R  can be a variable-length prefix, a port range, or a 

fixed protocol value. We often refer to the j
th
 field as the 

j
th
 dimension. 

i
A  is the directive associated with rule 

i
R . 

When a packet arrives, the header values (jP j =  

1, ), α⋯  from the relevant fields in the packet header are 

extracted, where jP  is a fixed-length bit string. A packet 

with header fields ( )1 2
, , ,P P P P

α
= ⋯  matches a rule 

( )1 2
, , , ,

j

i i i i i
R R R R A= ⋯  if  matches j

i
R  for all of the fields 

1, , αj = ⋯ . 

Each rule in a classifier has a priority index, and they 

are usually sorted in priority order. This priority index is 

necessary, because a packet can match more than one rule. 

In classifier R , it is assumed that 1R  has the highest 

priority and NR  has the lowest priority. 

All matching rules are returned when using multi-

match packet classification; the best matching rule (BMR) 

with the highest priority is returned when using single-

match packet classification. Let ( )PM  represent the set 

of rules that packet P  matches. Let ( )I S  represent the 

smallest priority index in the set of rules, S . For a given 

packet, ( )1 2
, , ,P P P Pα

= ⋯ , in the set of rules found in 

classifier { }1 2
, , ,

N
R R R=R ⋯ , the multi-match packet 

classification problem is to find the set of matching rules, 

( )PM ; the single-match packet classification problem is 

to find the smallest priority index, ( )( )I PM . 

3. Related Work  

3.1 Multi-match Architectures with TCAM 

Even though TCAM has been popularly used in packet 

classification to achieve wire-speed packet forwarding, 

several issues are still unresolved. In addition to the 

required TCAM size, the most important issue is the power 

dissipation problem, which is closely related to the number 

of TCAM entries activated when a lookup occurs. Another 

issue is the rule replication problem related to the port 

number fields. The port number fields can hold a fixed 

number or a range specified by low and/or high boundaries. 

If a rule has a field specified by a range, the range has to 

be converted into multiple prefixes, and the rules with each 

converted prefix are then stored in TCAM entries. Since a 

port range can be converted into a maximum of 30 prefixes, 

if two port fields are specified by ranges, a maximum of 

900 TCAM entries are required. Researchers have 

proposed range-encoding algorithms in order to improve 

storage efficiency [14]. 

A critical issue regarding TCAM being applied to the 

multi-match packet classification problem is that TCAM is 

designed to produce a single best match. Two different 

approaches to this issue are possible: modifying the 

TCAM hardware [8-10] or through algorithms [5-7, 11, 

13]. 

The bit vector TCAM (BV-TCAM) [9] architecture 

combines a bit vector algorithm [19] to address the multi-

match classification problem. Lakshman and Stidialis 
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removed the priority encoder from TCAM to get an -bit 

vector after the TCAM lookup, where N  is the number 

TCAM entries [19]. Each bit of the bit vector indicates the 

match to the corresponding rule. However, dealing with 

the N -bit vector to identify matching results is inefficient, 

especially when  is large and the vector is sparse. The 

scheme proposed by Deng et al. uses a result encoder, 

which keeps all of the matching results one by one in 

exactly one conventional TCAM lookup period [10]. 

TCAM output without the priority encoder forms a bit 

vector, and a logic unit monitors the bit vector and locks 

the matching entry when the corresponding bit has a valid 

return. 

Since TCAM should be used for both single-match and 

multi-match problems, the algorithmic approach (rather 

than modifying TCAM hardware) is a better solution. The 

current industrial solution for using TCAM for the multi-

match problem is to use a valid bit for each entry. Every 

valid bit is set to an initial state. When a given input 

matches an entry, the valid bit of the entry is reset. The 

next TCAM lookup cycle will produce another matching 

result (if any) among the entries with a valid bit set. 

Therefore, this scheme produces k  matching results with  

TCAM lookups. It requires six cycles to initialize all of the 

valid bits (when a new packet classification is started) and 

to reset the valid bit (when a match is produced from 

TCAM), and hence, this scheme requires a total of 7 cycles 

for k  matching results. 

The multi-match using discriminators (MUD) 

algorithm addresses the multi-match problem in TCAM by 

utilizing extra unused bits [5]. Each TCAM entry includes 

a discriminator (an index) value along with the rule fields. 

If a TCAM lookup cycle produces a single best match for a 

TCAM entry with a specific discriminator value, the 

search key of the next cycle lookup is expanded to include 

a prefix that corresponds to a range greater than the 

discriminator value. Therefore, the MUD algorithm does 

not require setting and resetting the valid bits, and 

produces  matching results with k  TCAM lookups. Since 

every entry is accessed for every cycle of a TCAM lookup, 

the algorithm consumes a large amount of power. 

Using a geometric intersection scheme (GIS), Yu et al. 

[6] generated all of the intersection rules and stored them 

in TCAM in a compatible order. Using the index of single 

best matches reported by TCAM, SRAM is accessed to 

obtain all of the matching rules. Depending on the rule set 

characteristics, the number of newly created entries for the 

intersection can be more than 10 times that of the original 

rule set. This algorithm provides a single TCAM lookup 

for multi-match classification, but it is an expensive and 

power-hungry solution because of the newly created 

intersection entries. The set splitting algorithm (SSA [7, 

11]) splits the rule set into multiple groups in order to 

reduce the number of intersection rules, and performs 

separate TCAM lookups in these groups in parallel. When 

a rule set is split into two groups, the removal of at least 

half of the intersection rules is guaranteed in this scheme. 

However, it still adds rules for partially overlapped rules in 

each group, and the pre-processing needed for the set 

splitting is quite complex. 

Faezipour and Nourani [8, 13] proposed the 

partitioning of a rule set into multiple groups, but their 

approach is different in that power dissipation is reduced 

by enabling TCAM to search one partition while disabling 

the others. Their partitioning approach follows two steps: 

maximum partitioning and minimum partitioning (MX-

MN). In the maximum intersection partitioning step, each 

partition holds the maximum intersections, and partitions 

are disjointed from each other. The next partitioning is 

based on the minimum intersection among the rules found 

in each partition. Each minimum partition is stored in 

separate TCAM. A contention resolver activates the 

maximum partition for each packet; the minimum 

partitions in the activated maximum partition are then 

accessed in parallel in order to produce multiple matching 

results. Activating only a portion of TCAM is a good idea 

for reducing power, but most partitions have very few 

entries, and most of the rules are positioned in the distinct 

rule collection. The required amount of separate TCAM is 

equal to the total number of partitions, and can be several 

thousand TCAMs. 

3.2 Multi-match Algorithm based on 
Tuple Space 

Since our proposed approach is based on tuple space, a 

tuple space–based algorithm [15] is described in detail. 

The tuple space–based algorithm defines a tuple as the 

length combination of plural fields. The algorithm searches 

each of the tuples using an efficient search method, such as 

hashing. However, since the number of tuples that need to 

be searched for each input packet can be excessive, it is 

preferable to use a subset of tuples compatible with the 

individual field matches; this method is called tuple 

pruning [15, 16]. Tuple-pruning algorithms reduce the 

number of tuples included in the search space for each 

given input packet through an individual field operation. A 

tuple is a combination of the field lengths. Prefix fields 

have variable lengths. A port range is converted into plural 

variable-length prefixes. A protocol field has either a 

length of 0 (the wildcard) or a length of 8 (the exact 

protocol value). 

Let ( )jiRℓ  be the length of the j
th
 field of rule 

i
R . 

Then rule 
i
R  is mapped to a tuple, ( )

i
T R = 1 2( ( ), ( ),

i i
R Rℓ ℓ  

, ( ))a

i
R⋯ ℓ . The number of possible tuples is the product 

of the number of possible lengths of all of the fields. Let 

U  be the universal set of tuples with five attributive fields 

( )α 5 ;=  then, the universal set U  would be =U  

( )1 2 3 4 5 1 2 3 4 5
{ , , , , |0 , 32,0 , 16, 0 or 8},j j j j j j j j j j≤ ≤ ≤ ≤ =

since the prefix lengths can be 0 through 32, the port 

ranges can be 0 through 16, and the protocol field has 

length 0 or 8. However, since the number of distinct 

lengths tends to be small, the number of distinct 

combinations will be smaller than the number of all 

possible tuples. Therefore, for a given classifier, the 

number of active tuples (to which at least one rule is 

mapped) will be much smaller than the number of possible 

tuples. 
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Let { }1 2
, ,T T Tµ=A � ⋯  represent the set of active 

tuples of a given classifier, where µ  is the number of 

active tuples. Since every rule mapped to a single tuple has 

the same combination of field lengths, by concatenating 

the bits of each field, the rules mapped to a tuple can be 

stored in a hash table. Let 
k

H  (for 1,k µ= ⋯  be the 

hash table for active tuple 
k
T . For a given packet, the 

matching rules are identified by accessing each 
k

H  for 

1,k µ= ⋯ . 

However, since it could take a long time to access all of 

the hash tables for each packet, several optimization 

techniques have been developed to reduce the search space 

by reducing the number of tuples that need to be searched 

for each given input packet. Let ( )PT  be the set of tuples 

determined as the search space for a given packet, P ; then, 

( )P ⊂T � �A  and ( ) { }1 2
,

p p pl
P T T T=T ⋯ , where  l µ≤ , 

and the matching rules will be identified more quickly by 

accessing the hash tables,  
pi

H  for 1,i l= ⋯ . 

The tuple-pruning algorithm [15] uses individual field 

operations to reduce the search space for a given packet. 

Tuple pruning will be beneficial if the reduction in the 

tuple space afforded by pruning offsets the extra individual 

field operations. Each field operation is performed against 

distinct elements of the field, and identifies the matches. 

The matching lengths are used to identify the subset of 

tuples that are compatible with the individual matches. The 

search space of the packet is determined by combining the 

matching lengths obtained from each field operation. 

For header field ( )1, , α
jP j = ⋯ of a given packet, P , 

let ( )jPL  represent the set of prefix lengths that the 

header jP  matches. The set ( ) { }1
,

j

v
P =L ℓ ⋯ ℓ  is 

identified by performing a 1-D lookup against the distinct 

elements in j

i
R  (for 1,i N= ⋯  and  1,j α= ⋯ ). Next, 

by calculating the cross product of all ( )jP�L  sets for 

1, , ,j α= ⋯  the cross product set ( ) ( )1P P= ⊗C �L  

( )  Pα
⊗�L⋯ is obtained to compose the tuple space. The 

search space ( )PT  for a given packet P  is defined as the 

intersection of active tuple set A  and the cross product set 

( )PC , i.e.: 

 

 ( ) ( ) P P= ∩T A� �C  (1) 

 

Note that A  is determined by the given rule set R  in 

the build process, whereas ( )PC  is obtained in the search 

process for each incoming packet, P. Both A  and 

( ) PC are subsets of U , ( )   P ⊂ ⊂T A� U�  and ( )  P ⊂T  

( )   P ⊂C U , respectively. 

It is known that using additional fields, such as port 

numbers and protocol type, does not improve the search 

performance in the tuple space–based algorithm [15], and 

therefore, the tuple-pruning approach is described in this 

paper as using two prefix fields. Table 1 shows a 

simplified rule set with two prefix fields as an example.  

The given classifier example has an active tuple space 

of ( ) ( ) ( ) ( ){ }1,1 , 1,3 , 2, 2 , 3,3 ;=A� �  each rule is stored in 

the hash table of its corresponding tuple. As a simple 

example with four-bit source and destination addresses, 

assuming that packet ( )0100, 1110P =  is given, the 

search procedure is as follows.  

By performing the search for the source prefix field, we 

have matches in lengths 1, 2, and 3, i.e. ( ) { }1
1,P =L . 

Similarly, by performing a search for the destination prefix 

field, ( ) { }2
1,P =L . The cross product of ( )1PL  and 

( )2PL  produces the cross product set ( ) ( ){ 1,1 ,P =C  

( ) ( ) ( ) ( ) ( )}1,3 , 2,1 , 2,3 , 3,1 , 3,3 .  By the intersection opera- 

tion given in (1), the search space is determined as 

( ) ( ) ( ) ( ){ }1,1 , 1,3 , 3,3P =T .  

The matching rules of the given packet are identified 

by accessing the hash tables of these three tuples. 

3.3 Bloom Filter Theory 

As a simple bit vector, a Bloom filter is a space-

efficient probabilistic data structure that is used to test 

whether an element is a member of a set [25, 26]. Bloom 

filter theory supports two different operations: 

programming and querying. Programming is a procedure 

that stores membership information in a Bloom filter. 

Querying is a procedure that tests whether a given input is 

a member of the set. 

Let M  be the length of the Bloom filter, and let N  be 

the number of elements programmed into the Bloom filter. 

The number of hash indices,  K , used in programming the 

Bloom filter is known to be optimum when it has the 

following relationship [25]: 

 

 
2log

ln 2
2

N

M
K =  (2) 

 

Before programming, every bit location of the Bloom 

filter is initialized to zero. The procedure to program 

element x into the Bloom filter follows: 

 

Table 1. The rule set example. 

Rule No. Source Prefix Destination Prefix Tuple Space 

0
R  0* 1* (1, 1) 

1
R  1* 110* (1, 3) 

2
R  01* 00* (2, 2) 

3
R  0* 111* (1, 3) 

4
R  111* 110* (3, 3) 

5
R  010* 110* (3, 3) 
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Algorithm 1. Bloom Filter Programming 

1:   Bloom_Filter_Programming( x ) 

2:   for ( i  = 1 to K ) 

3:          BF[  (
i
h x )] = 1; 

 

For each element x  included in a set, K  different 

hashing indices,  (
i
h x ), are obtained in such a way that the 

resulting hash index m  is in the range 0 m M≤ < . All of 

the bit locations corresponding to the K  hash indices are 

set to 1 in the Bloom filter. 

The procedure to query whether input y is a member of 

the set is as follows: 

 

Algorithm 2. Bloom Filter Querying 

1:   Bloom_Filter_Querying ( y ) 

2:   for ( i  = 1 to K ) 

3:           if (BF[  (
i
h y )] = = 0) return negative; 

4:   return positive; 

 

For input y , K  hash indices are generated using the 

same hash functions that were used to program the filter. 

The bit locations in the Bloom filter corresponding to the 

hash indices are checked. If at least one of the locations is 

0, then it is absolutely not a member of the set. If it was a 

member of the set, the bit location corresponding to the 

hash index would have been set to 1 during programming. 

This result is negative. If all the bit locations are set to 1, it 

is positive. However, even if all these bit locations are set 

to 1, it does not mean that they were set only by the 

elements under query. It is possible that these locations 

could have been set by some other elements. This type of 

positive result is a false positive. On the whole, a Bloom 

filter may produce false positives, but does not produce 

false negatives. 

4. Proposed Architecture  

This section describes our approach to the multi-match 

packet classification problem. Our strategy is to design an 

efficient architecture that provides reduced power 

consumption and a high lookup speed. In regards to 

reducing the power requirements, TCAM size should be 

small, and the required number of TCAM lookups for each 

packet should be limited to one. Our approach combines 

the tuple space–based algorithm with TCAM. 

The proposed architecture is composed of three parts: 

TCAM for each field, a tuple-pruning unit, and multiple 

small SRAM modules employing hash tables. In our 

approach, TCAM includes every distinct value of each 

field. The longest matching prefix is generated through the 

individual field search using TCAM. The issues facing us 

now are how to combine the results from each field search 

and to identify the matching rules. We use the tuple space 

approach to combine the individual search results, and we 

propose using a Bloom filter to remove unnecessary tuples. 

Hash tables using SRAM are accessed in parallel for the 

tuples determined as positive by the Bloom filter to 

produce matching results. 

The tuple-pruning unit is composed of prefix vector 

SRAM (PV-SRAM), a bit-operation block, and a tuple 

Bloom filter. The prefix vector represents the prefix 

containments of distinct values of a field in a given rule set 

[27]; each PV-SRAM entry includes the prefix vector of 

the corresponding TCAM entry. For example, if there are 

prefixes 0*, 01*, and 010* in a field, the prefix vectors 

corresponding to those prefixes are 100, 110, and 111, 

respectively. The prefix vector 111 means that prefix 010* 

has nested prefixes of lengths 1, 2, and 3 (itself). The 

prefix vector is different from the bit vector [9, 19]; the 

size of a prefix vector is equal to the longest prefix (which 

is 32 bits for IPv4), whereas the size of a bit vector is equal 

to the number of rules [19] or the number of TCAM entries 

[9]. The bit-operation block calculates the cross product of 

the prefix vectors and the intersection with active tuples, as 

seen in (1). The tuple Bloom filter removes redundant 

tuples so that unnecessary SRAM accesses are avoided. 

Rules included in tuple space are stored in a hash table. A 

directive for rule treatment is also stored in the hash table 

along with each rule. 

Fig. 1 shows the proposed architecture for the example 

rule set given in Table 1. For the same example 

packet, ( )0100, 1110P =  the Source-TCAM and 

Destination-TCAM produce the best matching prefixes, 

010* and 111*, respectively. The corresponding prefix 

vectors are 111 and 101, respectively. By calculating the 

cross product of these two prefix vectors and with the 

intersection operation, which is represented by a two-

dimensional vector operation in the tuple-pruning unit 

shown in Fig. 1, the search space is determined as 

( ) ( ) ( ) ( ){ }1,1 , 1,3 , 3,3P =T .  

The tuple-pruning algorithm is efficient in reducing the 

number of tuples to search; however, it can be further 

improved. In our example, accessing the hash table of 

tuple (3, 3) is unnecessary, since no rule in tuple (3, 3) of 

Table 1 matches the given input. Since the input matches 

the three-bit prefix of 
5
R  in the first field and the three-bit 

prefix of 
3

 R  in the second field, the tuple (3, 3) was not 

excluded, even though there is no matching rule combining 

those two prefixes. The tuple (3, 3) in this example is 

termed a false tuple; false tuples are removed through the 

use of a simple Bloom filter in our proposed architecture. 

Let ( )( )PB �T  represent the positive set obtained by 

applying the tuple Bloom filter to the tuple set, ( )PT . 

Since some false tuples are removed by the tuple Bloom 

filter, we obtain: ( )( ) ( )P P⊂B T � T . 

Any arbitrary hash generator can be used to program 

the Bloom filter. The Bloom filter needs to accommodate 

prefixes of arbitrary lengths in a single Bloom filter, and 

hence, it requires a hash generator that produces hash 

indices for variable-length prefixes. A cyclic redundancy 

check (CRC) generator has excellent characteristics for our 

purposes [21]. The CRC generator scrambles the bits of a 



Lim et al.: Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach  

 

32 

given input and produces a fixed-length binary sequence 

known as a CRC code, regardless of the prefix length. Any 

number of hash indices (each of which is used as a pointer 

to a Bloom filter bit location or to a hash table entry) can 

be obtained from the generated CRC code by selecting 

different combinations of bits. 

For the classifier given in Table 1, we describe the 

procedure used to program and query the Bloom filter. An 

eight-bit CRC generator, as shown in Fig. 2, is used for 

programming and querying the Bloom filter in this 

example. Table 2 shows the hash key for the CRC 

generator, the CRC code corresponding to the hash key, 

and the Bloom filter indices. Registers of the CRC 

generator are assumed to be initialized by 10001001 in this 

example. The Bloom filter size, M , is assumed to be 32 

bits, which is four times 2log
2 pN , where 

p
N  is the number 

of distinct rules in source and destination prefix pairs from 

Table 1. The number of hash indices programming the 

Bloom filter is equal to three, according to (2). In this 

example, we arbitrarily select a set of bits as hash indices. 

The selected indices are bits [7:3], [6:2], and [4:0] of the 

CRC code. The Bloom filter programming is completed by 

setting the bits indicated by the column of Bloom filter 

indices from Table 2. 

Fig. 3 shows the Bloom filter programmed by the 

indices shown in Table 2 for the example rules. For 

example packet ( )0100, 1110P = , a query to the Bloom 

filter is performed for ( ) ( ) ( ) ( ){ }1,1 , 1,3 , 3,3 .P =T  The 

hash key corresponding to the tuple (1, 1) is 01; the CRC 

code is 11010011. Therefore, the hashing indices for the 

tuple are 26, 20, and 19. Examining the bits of the Bloom 

filter located by these indices, we obtain a positive result. 

This means the possibility of a rule with (0*, 1*) in tuple 

(1, 1), and hence, the hash table needs to be accessed for 

this tuple. For the next tuple, (1, 3), the key and the 

 

Fig. 1. The proposed multi-match packet classification architecture. 

 
Table 2. The Bloom filter indices for the classifier given in Table 1. 

Rule No. Source Prefix Destination Prefix Tuple Space Hash Key CRC code BF Indices 

0
R  0* 1* (1, 1) 01 11010011 26, 20, 19 

1
R  1* 110* (1, 3) 1110 00011010 3, 6, 26 

2
R  01* 00* (2, 2) 0100 11110100 30, 29, 20 

3
R  0* 111* (1, 3) 0111 10011101 19, 7, 29 

4
R  111* 110* (3, 3) 111110 00110010 6, 12, 18 

5
R  010* 110* (3, 3) 010110 10001001 17, 2, 9 

 

 

Fig. 2. Eight-bit CRC generator.  

 

 

Fig. 3. Tuple Bloom filter programmed by rules in Table 2. 
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corresponding CRC code is 0111 and 10011101, 

respectively, making the Bloom filter indices 19, 7, and 29. 

Examining the bits of the Bloom filter located by these 

indices, we obtain a positive result. Lastly, for the tuple 

(3, 3), the key and the corresponding CRC code are 

010111 and 00111000, respectively. The Bloom filter 

indices are 7, 14, and 24. Examining the bits of the Bloom 

filter located by these indices, we obtain a negative result, 

since there is at least one zero in the bit locations. Hence, 

the tuple (3, 3) is identified as a false tuple, and it is not 

necessary to access the hash table for this tuple. In this 

manner, the search space determined by the proposed 

algorithm is reduced to ( )( ) ( ) ( ){ }1,1 , 1,3P =B �T . 

Throughout this example, one false tuple was identified 

by the Bloom filter, and hence, one SRAM access was 

eliminated. The only drawback of the Bloom filter is that it 

can have false positives; the false positive rate of a Bloom 

filter can be controlled by increasing the size and number 

of indices, as will be shown in the simulation section. 

SRAM is accessed in parallel for ( )( )P =B T  

( ) ( ){ }1,1 , 1,3 . Two matching rules are found in these two 

tuples; rule 
0
R  in tuple (1, 1) and rule 

3
R  in tuple (1, 3). 

The search procedure for the proposed algorithm is 

summarized in Algorithm 3 for cases where two prefix 

fields are used for the tuple-space search. The other rule 

fields are stored in hash tables. Let 1P  and 2P  be the 

source and destination addresses, respectively, of a given 

input packet,  P . Let ( ),jS P l  be the sub-string of the 

most significant l  bits of jP . 

For the source and destination addresses of a given 

input packet, each TCAM produces an index for the 

longest matching prefix of each field. This index is used 

when accessing PV-SRAM. Using the prefix vector, prefix 

lengths matching each given address, ( )1PL  and ( )2P�L , 

are obtained. By calculating the cross product of the 

matching lengths, a list of tuples, ( )PC , is generated. 

Bitwise AND the tuple list with the active tuple list of the 

given rule set to obtain ( )PT . For the tuples included 

in ( )P�T , the Bloom filter is queried. The tuples 

determined positive by the tuple Bloom filter are included 

in ( )( )PB �T . The hash tables are accessed for tuples in 

( )( )PB �T , and multiple matching rules are identified. 

Since TCAM power dissipation is directly related to 

the number of entries and the number of TCAM lookups 

needed for a classification, it is ideal to have small TCAM 

modules and a limited number of TCAM lookups. Since 

only the distinct values of each field are stored in TCAM, 

the number of required TCAM entries is much smaller 

than found in previous approaches. Each TCAM is 

accessed once for each packet. Rules with entire rule fields 

are stored in SRAM so that the port ranges of rules are 

stored as they are, without being converted to multiple 

prefixes. This results in no rule replication in our proposed 

approach. 

5. Simulation Results and Performance 
Analysis   

Classbench [28] has been widely used in generating 

rule sets and input traces to evaluate the performance of 

packet classification algorithms. Using Classbench, we 

have generated three different types of five-dimensional 

rule sets, an access control list (ACL), an Internet protocol 

chain (IPC), and a firewall (FW), with about 1000 and 

5000 rules. Input traces that have three times the number 

of rules were also generated. In this simulation, two prefix 

fields are used for tuple pruning. All the rule information 

composed of every field was stored in SRAM hash tables; 

each was compared with a given input when a hash entry 

was accessed. 

5.1 Rule Set Characteristics  

Table 3 shows the characteristics of the rule sets. N  is 

the number of rules included in each rule set. 
p

N  is the 

number of rules that possess distinct source and destination 

prefix pairs. The FW has the smallest value of 
p

N ; this 

means that many rules share the same source–destination 

Algorithm 3. Search procedure 

1: Search ( P ) { 

2:           srcIndex = SrcTCAM ( 1P ); 

3:          dstIndex = DstTCAM( 2P ); 

4:          ( )1PL   = SrcPV-SRAM(srcIndex); 

5:          ( )2PL   = DstPV-SRAM(dstIndex); 

6:          ( )PC  = ( ) ( )1 2P P⊗L L ; 

7:          ( )PT  = ( )P∩A� �C ; 

 

8:          for all tuples (
1
l , 

2
l ) ( )P∈T  { 

9:                hashKey = concat ( ( ) ( )1 2

1 2
,S P l S P l ; 

10:              for all (1 i K≤ ≤ ) { 

                   // K  is the optimum number of hash indices 

11:                     hi = hash_generator( i , hashKey); 

                            queryResult = BF_query(
1 2
, ,

K
h h h⋯ ); 

12:                    if ( queryResult == positive)  

13:                               Put (
1
l , 

2
l ) into ( )( )PB �T ; 

14:                 } 

15:         } 

16:        for all tuples ( ) ( )( )1 2
,l l P∈B �T  { 

             // Perform in parallel 

17:               hashKey = concat ( ) ( )( )1 2

1 2
,S P l S P l ;  

18:               index = hash_generator(hashKey); 

19:               Ri = SRAM(index); 

20:               if ( P  matches 
i
R ) return 

i
R ; 

21:          } 

22: } 
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prefix pair in the FW set. Let ( )n A  represent the number 

of active tuples. For every rule set, the number of active 

tuples is significantly smaller than the maximum number 

of tuples (which is 1089). The ACL has the smallest (and 

the IPC has the largest) number of active tuples. The IPC 

has the largest number in both ( )n A  and .
p

N  These 

characteristics affect Bloom filter performance and hash 

table performance, as will be shown. 
s

N  and 
d

N  are the 

number of distinct values in the source field and the 

destination prefix field, respectively, and they are the 

required number of TCAM entries. They are significantly 

smaller than N. 

Table 4 shows tuple characteristics. The average 

number of tuples remaining after tuple pruning [15], 

( )PT , is much smaller than the number of active tuples, 

( )n A  in Table 3. We can see that the tuple-pruning 

approach effectively prunes the number of tuples, and 

thereby, effectively reduces the search space. T2_field 

represents the average number of rules matching an input 

packet in two prefix fields. T5_field is the average number 

of rules matching an input packet in all five fields. These 

matching rules are returned in the multi-match packet 

classification. 
T2_field is very close to T5_field, and hence, tuple 

pruning using two prefix fields is sufficiently effective and 

much simpler than using all five fields. When two prefix 

fields are used for tuple pruning, the difference between 

( )PT  and T2_field is the average number of false tuples. 

It is large in IPC sets, which is close to 10 for the IPC5K 

set. In our proposed architecture, a Bloom filter is queried 

for ( )PT , and we will show that the Bloom filter 

removes the false tuples effectively. 

5.2 Entry Structure  

As shown in Section 5.1, for sets with N  < 5000, 
p

N  

< 3000. The required memory for the tuple Bloom filter is 

about 4 KB when the size of the Bloom filter is 8
'

p
N  , 

where 2log'  2 pN

p
N = . This means that the Bloom filter can 

easily be embedded into a forwarding ASIC.  

Table 5 shows the entry structure for SRAM. As shown, 

the width of the entry is 23 bytes. The total memory for 

hash tables is less than 200 KB for rule sets with about 

5000 rules, which is calculated as 2log2 N  entries multiplied 

by the width of the memory. 

The required amount of SRAM is equal to the number 

of active tuples, assuming they are accessed in parallel. 

However, all of these hash tables are not necessarily 

accessed in parallel. In our simulation, the number of 

simultaneous accesses is 4 to 7 on average, and less than 

20 in the worst case. All the rules can be stored in a single 

hash table without separating them by tuples. Since the 

required memory amount is small, if we have multiple 

copies of the hash table for parallel access, then the 

required amount of SRAM can be reduced to the worst 

case number of positive tuples, which is 20. Even in this 

case, the total amount of SRAM is less than 4 MB. 

5.3 Comparison with other TCAM-based 
Multi-match Architectures  

Table 6 shows a comparison of our proposed 

architecture to other algorithmic TCAM-based multi-

match packet classification architectures described in 

Section 3.1. The previous approaches have trade-offs in 

the amount of TCAM, the number of TCAM entries, or the 

number of TCAM lookups. Our approach requires two 

small TCAM modules, and the number of TCAM lookups 

is only one per packet. Therefore, our approach is power-

efficient. These improvements come at the cost of multiple 

Table 3. Rule set characteristics. 

Rule Set N  p
N  ( )n A  

s
N  

d
N  

ACL 958 570 61 57 361 

IPC 988 925 366 207 454 1K 

FW 871 539 290 143 59 

ACL 4660 2453 102 653 907 

IPC 4468 2933 680 128 463 5K 

FW 3067 1274 476 67 505 

 

Table 4. Average number of tuples and rules. 

Rule Set ( )PT  T2_field T5_field 

ACL 4.45 2.87 2.73 

IPC 4.94 1.53 1.19 1K 

FW 7.63 5.41 4.02 

ACL 6.87 3.87 3.29 

IPC 15.29 5.41 4.00 5K 

FW 8.16 6.15 5.67 

 

 

Table 5. SRAM entry structure. 

Field Number of bits 

Entry Valid 1 

Rule Number 14 

Source Prefix Length 6 

Source Prefix 32 

Destination Prefix Length 6 

Destination Prefix 32 

Source Port Wild 1 

Source Port Start 16 

Source Port End 16 

Destination Port Wild 1 

Destination Port Start 16 

Destination Port End 16 

Protocol Wild 1 

Protocol Type 8 

Directive 18 

Total 23 bytes 
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small SRAM modules and parallel access to SRAM, but 

this cost is insignificant, given that SRAM is much less 

expensive and requires very little power. Several 

approaches require very complicated pre-processing to 

store the rules in TCAM, either in identifying the 

intersections of the rules [6] or in separating them into 

multiple groups [7, 11], resulting in a high update cost 

with these approaches. The pre-processing requirements of 

our approach is to calculate prefix vectors and store them 

into PV-SRAM, and to program a Bloom filter using two 

prefix fields of each rule. This process is much simpler 

than that found in other approaches. All of the other 

approaches shown in Table 6 have a port range problem, 

since all of the rule fields are stored in TCAM, whereas 

our approach does not have this problem, since the port 

range fields are stored in SRAM. 

5.4 Comparison with Other Algorithmic 
Approaches  

Our proposed architecture was compared with other 

algorithmic approaches that enable multi-match packet 

classification. Among various algorithms that have been 

developed for single best–match packet classification, 

decision tree–based algorithms such as hierarchical 

intelligent cutting (HiCuts) [17] and multi-dimensional 

hierarchical cutting (HyperCuts) [18] also provide a multi-

match classification capability. 

In building HiCuts and HyperCuts, spfac was set at 2 in 

this simulation. Table 7 shows the HiCuts and HyperCuts 

characteristics for an arbitrary value of binth. As shown in 

the copy factor, f, a rule is replicated many times. 

Figs. 4 and 5 show a search performance comparison 

using the average number of memory accesses and the 

worst-case number of memory accesses, respectively. For 

a fair comparison with HiCuts and HyperCuts, it was 

assumed that a single SRAM module is used in our 

proposed architecture (and the tuple-pruning algorithm 

[15]). Hence, a number of tuples are serially probed. Rules 

with the same source and destination prefixes are mapped 

to the same hash entry, and they are stored in a linked list. 

These entries are linearly probed. Hence, the number of 

memory accesses becomes worse than the number in 

T2_field. The search performance of HyperCuts is 

significantly worse than HiCuts in the FW and IPC sets 

because of the optimization of common rules pushing 

upward. The figures show that the proposed architecture 

provides slightly better search performance than the tuple-

pruning algorithm [15] and much better performance than 

the decision-tree algorithms [17, 18] in most cases.  

Table 8 shows the required SRAM. In this simulation, 

the number of hash entries is four times the number of 

rules, which is 2log4 2 N× , in order to reduce the number of 

rules mapped to the same entry. Each hash entry is 23 

bytes, as shown in Table 5. For our proposed algorithm, 

the memory amount for the PV-SRAM, which is 

( )2 2log log
4 2 2s dN N
× +  bytes, and the memory amount for 

the Bloom filter, which is 4000 bytes, are additionally 

required. The tuple-pruning algorithm and the proposed 

algorithm require two TCAM modules storing distinct 

source prefixes and distinct destination prefixes, whereas  

Table 6. Comparison of the proposed algorithm to other TCAM-based approaches. 

Approaches MUD[5] GIS[6] SSA[7] MX-MN[8] Proposed 

No. of TCAM 

Modules 
1 1 2 or 4 > thousands 2 

No. of TCAM  

Entries (in N) 
1 > 10 times > 1.2 times 1 << 1 

No. of TCAM  

Lookups 
about 20 1 1 1 1 

No. of SRAM 

Modules 
1 1 1 1 20 

Pre-processing  

Complexity 
low high very high very high low 

Update Cost low high medium low low 

Port Range Problem Yes Yes Yes Yes No 

 

Table 7. Decision-tree characteristics of HiCuts [17] and HyperCuts [18]. 

HiCuts HyperCuts 1 HyperCuts 2 
Rule N binth 

Dt f Dt f Dt f 

ACL1k 958 6 66 19.6 17 5.2 35 9.8 

ACL5k 4660 13 34 16.2 13 7.0 23 10.3 

IPC1k 988 5 70 11.0 22 3.3 30 11.8 

IPC5k 4468 15 67 201.8 19 96.8 22 490.5 

FW1k 871 11 64 97.5 22 9.2 25 70.3 

FW5k 3067 17 63 393.4 18 47.1 19 878.3 
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Fig. 4. Comparison of the average number of memory 
accesses (a) ACL, (b) IPC, (c) FW. 

 

 

Fig. 5. Comparison of the worst-case number of 
memory accesses (a) ACL, (b) IPC, (c) FW. 

 

Table 8. Comparison of the required SRAM amount per rule with other algorithmic approaches (MB). 

Rule Set Tuple Pruning [15] HiCuts [17] HyperCuts [18] Proposed 

ACL 0.092 0.968 0.172 0.098 

IPC 0.092 0.603 0.119 0.099 1K 

FW 0.092 2.830 0.226 0.097 

ACL 0.74 2.190 0.885 0.752 

IPC 0.74 26.58 11.08 0.746 5K 

FW 0.37 36.19 3.680 0.376 
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decision-tree algorithms do not require TCAM. However, 
since rules are replicated many times in the decision-tree 
algorithms, the required SRAM amount is excessive, and 
hence, SRAM cannot be embedded in an ASIC.  

6. Conclusion 

Multi-match packet classification is becoming an 
essential feature that routers need to perform at wire speed 
for every incoming packet in order to support new 
emerging applications. This paper proposes a new 
algorithmic approach to the multi-match classification 
problem. Our proposed architecture is a power-efficient 
solution combining TCAM with a tuple-pruning algorithm. 
TCAM is used for individual field search in our proposed 
architecture; we propose the use of a TCAM index, which 
is the single best–matching result for each field, in order to 
obtain prefix vectors. The prefix vectors for each field are 
combined to make the list of tuples. Since the list may 
include false tuples, we also present a way to eliminate 
them by using a Bloom filter. For the list of tuples deemed 
positive by the Bloom filter, SRAM is accessed in parallel; 
the packet-treating directive is obtained by matching rules 
from SRAM access. Therefore, the proposed multi-match 
packet classification architecture requires a single TCAM 
lookup cycle, two SRAM access cycles (one for the prefix 
vector, and one for the tuple search), and several Bloom 
filter query cycles. Regarding the power consumption 
issue, our proposed approach reduces TCAM power by 
utilizing small amounts of TCAM and by accessing each 
TCAM entry only once for each packet. Port ranges are 
stored as they are in SRAM, resulting in no rule replication.  
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