
IEIE Transactions on Smart Processing and Computing, vol. 6, no. 1, February 2017
https://doi.org/10.5573/IEIESPC.2017.6.1.027

27

IEIE Transactions on Smart Processing and Computing

Multi-match Packet Classification Scheme Combining
TCAM with an Algorithmic Approach

Hysook Lim*, Nara Lee, and Jungwon Lee

1
Department of Electronic and Electrical Engineering, Ewha Womans University / Seoul, Korea hlim@ewha.ac.kr

2
LG electronics Incorporated / Seoul, Korea detlev@hanmail.net

3
Department of Electronic and Electrical Engineering, Ewha Womans University / Seoul, Korea jungwon0736@gmail.com

* Corresponding Author: Hyesook Lim

Received November 30, 2016; Revised December 28, 2016; Accepted January 10, 2017; Published February 28, 2017

* Regular Paper

Abstract: Packet classification is one of the essential functionalities of Internet routers in providing

quality of service. Since the arrival rate of input packets can be tens-of-millions per second, wire-

speed packet classification has become one of the most challenging tasks. While traditional packet

classification only reports a single matching result, new network applications require multiple

matching results. Ternary content-addressable memory (TCAM) has been adopted to solve the

multi-match classification problem due to its ability to perform fast parallel matching. However,

TCAM has a fundamental issue: high power dissipation. Since TCAM is designed for a single

match, the applicability of TCAM to multi-match classification is limited. In this paper, we propose

a cost- and energy-efficient multi-match classification architecture that combines TCAM with a

tuple space search algorithm. The proposed solution uses two small TCAM modules and requires a

single-cycle TCAM lookup, two SRAM accesses, and several Bloom filter query cycles for multi-

match classifications.

Keywords: Packet classification, TCAM, Tuple space search, Power consumption, Bloom filter, Hashing

1. Introduction

In designing an efficient packet-forwarding engine,

packet classification is an essential prerequisite for routers

when providing the different levels of service required by

various Internet applications [1]. Packet classification

determines the class of each packet using a set of header

fields so that routers process the packets using the service

defined for the class of each packet [2-24].

Most traditional applications require longest prefix or

highest priority matching. However, the multi-match

classification concept is becoming a major research item

because of the increasing need for network security from

systems such as network intrusion detection or worm

detection, or in new application programs, such as load

balancing and packet-level accounting [5-14]. As a

network intrusion detection system (NIDS) example, a

packet may match multiple rule headers, and related rule

options for all the matching rule headers need to be

identified in order to be checked later. For accounting,

multiple counters may need to be updated for a given

packet, and hence multi-match classification is necessary

in order to identify relevant counters for each packet [11].

To provide wire-speed packet forwarding, IP address

lookup and packet classification functions are designed

using application-specific integrated circuits (ASICs) with

off-chip ternary content-addressable memory (TCAM)

storing prefix sets or rule databases [5]. Using TCAM is

the best solution for providing single-cycle operation.

However, the applicability of TCAM is restricted by

several intrinsic issues. The primary issue is huge power

consumption. TCAM consumes 150 times more power per

bit than static random access memory (SRAM). TCAM

consumes around 30 to 40 percent of the total line card

power [6, 7]. When line cards are stacked together, TCAM

imposes a high cost on the cooling system. TCAM also

costs about 30 times more per bit of storage than double

data rate (DDR) SRAM. TCAM’s power consumption is

directly related to the number of TCAM accesses, and

grows linearly with the number of entries searched in

parallel [12]. In order to be energy- and cost-efficient,

TCAM-based solutions must use an economic TCAM size

and perform a limited number of TCAM lookups for each

packet. Studies have been conducted into many different

Lim et al.: Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

28

solutions, such as reducing TCAM size, reducing the

number of entries activated when a lookup is performed, or

limiting the number of TCAM lookups required for each

operation.

Another issue is related to port ranges in the

classification field. A port range has to be converted into

multiple prefixes, and hence, multiple TCAM entries are

needed to store a rule possessing port-range fields. The

third issue is that TCAM is not directly applicable to a

multi-match problem, since it was designed for a single

best match. In applying TCAM to the multi-match problem,

several different approaches have been proposed, but most

of these approaches have their own issues.
Various algorithms have been developed to perform

packet classification without using TCAM [15-24]. Among

these algorithmic approaches, tuple space–based [15, 16]

or decision tree–based [17, 18] algorithms provide multi-

match packet classification at the same time as single best-

match packet classification.

The purpose of this paper is to present a power-

efficient multi-match packet classification architecture. We

focus on two issues related to the multi-match

classification problem. TCAM produces a single best

match, and TCAM consumes a great deal of power. It is

necessary to have a general solution that works for both

single-match and multi-match problems using TCAM.

Therefore, changing TCAM hardware to produce multiple

matches is not a viable option. Our approach follows the

algorithmic approach, combining a tuple space–based

algorithm with TCAM. These improvements come at the

cost of multiple small SRAM modules that need to be

accessed in parallel; however, this cost is inconsequential,

given that SRAM is inexpensive and uses very small

amounts of power.

This paper is organized as follows: Section 2 defines

the packet classification problem. Section 3 presents

related work, such as TCAM-based multi-match packet

classification structures, tuple space–based algorithms, and

Bloom filter theory. Section 4 describes the proposed

multi-match packet classification architecture. Section 5

discusses simulation results and a performance analysis,

and Section 6 concludes the paper.

2. Packet Classification Problem

Header fields used in packet classification usually

include source IP address, destination IP address, source

port number, destination port number, and protocol type.

Let { }1 2
, , ,

N
R R R=R ⋯ represent a classifier where

()1,
i
R i N= ⋯ is a rule, and N is the number of rules.

If each rule,
i
R , has α attribute fields and one directive

field, then ()1 2
, , , ,

i i i i i
R R R R A

α
= ⋯ where (j

i
R j =

1, ,)α⋯ is the specification on the j
th
 field. Each field,

,j
i
R can be a variable-length prefix, a port range, or a

fixed protocol value. We often refer to the j
th
 field as the

j
th
 dimension.

i
A is the directive associated with rule

i
R .

When a packet arrives, the header values (jP j =

1,), α⋯ from the relevant fields in the packet header are

extracted, where jP is a fixed-length bit string. A packet

with header fields ()1 2
, , ,P P P P

α
= ⋯ matches a rule

()1 2
, , , ,

j

i i i i i
R R R R A= ⋯ if matches j

i
R for all of the fields

1, , αj = ⋯ .

Each rule in a classifier has a priority index, and they

are usually sorted in priority order. This priority index is

necessary, because a packet can match more than one rule.

In classifier R , it is assumed that 1R has the highest

priority and NR has the lowest priority.

All matching rules are returned when using multi-

match packet classification; the best matching rule (BMR)

with the highest priority is returned when using single-

match packet classification. Let ()PM represent the set

of rules that packet P matches. Let ()I S represent the

smallest priority index in the set of rules, S . For a given

packet, ()1 2
, , ,P P P Pα

= ⋯ , in the set of rules found in

classifier { }1 2
, , ,

N
R R R=R ⋯ , the multi-match packet

classification problem is to find the set of matching rules,

()PM ; the single-match packet classification problem is

to find the smallest priority index, ()()I PM .

3. Related Work

3.1 Multi-match Architectures with TCAM

Even though TCAM has been popularly used in packet

classification to achieve wire-speed packet forwarding,

several issues are still unresolved. In addition to the

required TCAM size, the most important issue is the power

dissipation problem, which is closely related to the number

of TCAM entries activated when a lookup occurs. Another

issue is the rule replication problem related to the port

number fields. The port number fields can hold a fixed

number or a range specified by low and/or high boundaries.

If a rule has a field specified by a range, the range has to

be converted into multiple prefixes, and the rules with each

converted prefix are then stored in TCAM entries. Since a

port range can be converted into a maximum of 30 prefixes,

if two port fields are specified by ranges, a maximum of

900 TCAM entries are required. Researchers have

proposed range-encoding algorithms in order to improve

storage efficiency [14].

A critical issue regarding TCAM being applied to the

multi-match packet classification problem is that TCAM is

designed to produce a single best match. Two different

approaches to this issue are possible: modifying the

TCAM hardware [8-10] or through algorithms [5-7, 11,

13].

The bit vector TCAM (BV-TCAM) [9] architecture

combines a bit vector algorithm [19] to address the multi-

match classification problem. Lakshman and Stidialis

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 1, February 2017

29

removed the priority encoder from TCAM to get an -bit

vector after the TCAM lookup, where N is the number

TCAM entries [19]. Each bit of the bit vector indicates the

match to the corresponding rule. However, dealing with

the N -bit vector to identify matching results is inefficient,

especially when is large and the vector is sparse. The

scheme proposed by Deng et al. uses a result encoder,

which keeps all of the matching results one by one in

exactly one conventional TCAM lookup period [10].

TCAM output without the priority encoder forms a bit

vector, and a logic unit monitors the bit vector and locks

the matching entry when the corresponding bit has a valid

return.

Since TCAM should be used for both single-match and

multi-match problems, the algorithmic approach (rather

than modifying TCAM hardware) is a better solution. The

current industrial solution for using TCAM for the multi-

match problem is to use a valid bit for each entry. Every

valid bit is set to an initial state. When a given input

matches an entry, the valid bit of the entry is reset. The

next TCAM lookup cycle will produce another matching

result (if any) among the entries with a valid bit set.

Therefore, this scheme produces k matching results with

TCAM lookups. It requires six cycles to initialize all of the

valid bits (when a new packet classification is started) and

to reset the valid bit (when a match is produced from

TCAM), and hence, this scheme requires a total of 7 cycles

for k matching results.

The multi-match using discriminators (MUD)

algorithm addresses the multi-match problem in TCAM by

utilizing extra unused bits [5]. Each TCAM entry includes

a discriminator (an index) value along with the rule fields.

If a TCAM lookup cycle produces a single best match for a

TCAM entry with a specific discriminator value, the

search key of the next cycle lookup is expanded to include

a prefix that corresponds to a range greater than the

discriminator value. Therefore, the MUD algorithm does

not require setting and resetting the valid bits, and

produces matching results with k TCAM lookups. Since

every entry is accessed for every cycle of a TCAM lookup,

the algorithm consumes a large amount of power.

Using a geometric intersection scheme (GIS), Yu et al.

[6] generated all of the intersection rules and stored them

in TCAM in a compatible order. Using the index of single

best matches reported by TCAM, SRAM is accessed to

obtain all of the matching rules. Depending on the rule set

characteristics, the number of newly created entries for the

intersection can be more than 10 times that of the original

rule set. This algorithm provides a single TCAM lookup

for multi-match classification, but it is an expensive and

power-hungry solution because of the newly created

intersection entries. The set splitting algorithm (SSA [7,

11]) splits the rule set into multiple groups in order to

reduce the number of intersection rules, and performs

separate TCAM lookups in these groups in parallel. When

a rule set is split into two groups, the removal of at least

half of the intersection rules is guaranteed in this scheme.

However, it still adds rules for partially overlapped rules in

each group, and the pre-processing needed for the set

splitting is quite complex.

Faezipour and Nourani [8, 13] proposed the

partitioning of a rule set into multiple groups, but their

approach is different in that power dissipation is reduced

by enabling TCAM to search one partition while disabling

the others. Their partitioning approach follows two steps:

maximum partitioning and minimum partitioning (MX-

MN). In the maximum intersection partitioning step, each

partition holds the maximum intersections, and partitions

are disjointed from each other. The next partitioning is

based on the minimum intersection among the rules found

in each partition. Each minimum partition is stored in

separate TCAM. A contention resolver activates the

maximum partition for each packet; the minimum

partitions in the activated maximum partition are then

accessed in parallel in order to produce multiple matching

results. Activating only a portion of TCAM is a good idea

for reducing power, but most partitions have very few

entries, and most of the rules are positioned in the distinct

rule collection. The required amount of separate TCAM is

equal to the total number of partitions, and can be several

thousand TCAMs.

3.2 Multi-match Algorithm based on
Tuple Space

Since our proposed approach is based on tuple space, a

tuple space–based algorithm [15] is described in detail.

The tuple space–based algorithm defines a tuple as the

length combination of plural fields. The algorithm searches

each of the tuples using an efficient search method, such as

hashing. However, since the number of tuples that need to

be searched for each input packet can be excessive, it is

preferable to use a subset of tuples compatible with the

individual field matches; this method is called tuple

pruning [15, 16]. Tuple-pruning algorithms reduce the

number of tuples included in the search space for each

given input packet through an individual field operation. A

tuple is a combination of the field lengths. Prefix fields

have variable lengths. A port range is converted into plural

variable-length prefixes. A protocol field has either a

length of 0 (the wildcard) or a length of 8 (the exact

protocol value).

Let ()jiRℓ be the length of the j
th
 field of rule

i
R .

Then rule
i
R is mapped to a tuple, ()

i
T R = 1 2((), (),

i i
R Rℓ ℓ

, ())a

i
R⋯ ℓ . The number of possible tuples is the product

of the number of possible lengths of all of the fields. Let

U be the universal set of tuples with five attributive fields

()α 5 ;= then, the universal set U would be =U

()1 2 3 4 5 1 2 3 4 5
{ , , , , |0 , 32,0 , 16, 0 or 8},j j j j j j j j j j≤ ≤ ≤ ≤ =

since the prefix lengths can be 0 through 32, the port

ranges can be 0 through 16, and the protocol field has

length 0 or 8. However, since the number of distinct

lengths tends to be small, the number of distinct

combinations will be smaller than the number of all

possible tuples. Therefore, for a given classifier, the

number of active tuples (to which at least one rule is

mapped) will be much smaller than the number of possible

tuples.

Lim et al.: Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

30

Let { }1 2
, ,T T Tµ=A � ⋯ represent the set of active

tuples of a given classifier, where µ is the number of

active tuples. Since every rule mapped to a single tuple has

the same combination of field lengths, by concatenating

the bits of each field, the rules mapped to a tuple can be

stored in a hash table. Let
k

H (for 1,k µ= ⋯ be the

hash table for active tuple
k
T . For a given packet, the

matching rules are identified by accessing each
k

H for

1,k µ= ⋯ .

However, since it could take a long time to access all of

the hash tables for each packet, several optimization

techniques have been developed to reduce the search space

by reducing the number of tuples that need to be searched

for each given input packet. Let ()PT be the set of tuples

determined as the search space for a given packet, P ; then,

()P ⊂T � �A and () { }1 2
,

p p pl
P T T T=T ⋯ , where l µ≤ ,

and the matching rules will be identified more quickly by

accessing the hash tables,
pi

H for 1,i l= ⋯ .

The tuple-pruning algorithm [15] uses individual field

operations to reduce the search space for a given packet.

Tuple pruning will be beneficial if the reduction in the

tuple space afforded by pruning offsets the extra individual

field operations. Each field operation is performed against

distinct elements of the field, and identifies the matches.

The matching lengths are used to identify the subset of

tuples that are compatible with the individual matches. The

search space of the packet is determined by combining the

matching lengths obtained from each field operation.

For header field ()1, , α
jP j = ⋯ of a given packet, P ,

let ()jPL represent the set of prefix lengths that the

header jP matches. The set () { }1
,

j

v
P =L ℓ ⋯ ℓ is

identified by performing a 1-D lookup against the distinct

elements in j

i
R (for 1,i N= ⋯ and 1,j α= ⋯). Next,

by calculating the cross product of all ()jP�L sets for

1, , ,j α= ⋯ the cross product set () ()1P P= ⊗C �L

() Pα
⊗�L⋯ is obtained to compose the tuple space. The

search space ()PT for a given packet P is defined as the

intersection of active tuple set A and the cross product set

()PC , i.e.:

 () () P P= ∩T A� �C (1)

Note that A is determined by the given rule set R in

the build process, whereas ()PC is obtained in the search

process for each incoming packet, P. Both A and

() PC are subsets of U , () P ⊂ ⊂T A� U� and () P ⊂T

() P ⊂C U , respectively.

It is known that using additional fields, such as port

numbers and protocol type, does not improve the search

performance in the tuple space–based algorithm [15], and

therefore, the tuple-pruning approach is described in this

paper as using two prefix fields. Table 1 shows a

simplified rule set with two prefix fields as an example.

The given classifier example has an active tuple space

of () () () (){ }1,1 , 1,3 , 2, 2 , 3,3 ;=A� � each rule is stored in

the hash table of its corresponding tuple. As a simple

example with four-bit source and destination addresses,

assuming that packet ()0100, 1110P = is given, the

search procedure is as follows.

By performing the search for the source prefix field, we

have matches in lengths 1, 2, and 3, i.e. () { }1
1,P =L .

Similarly, by performing a search for the destination prefix

field, () { }2
1,P =L . The cross product of ()1PL and

()2PL produces the cross product set () (){ 1,1 ,P =C

() () () () ()}1,3 , 2,1 , 2,3 , 3,1 , 3,3 . By the intersection opera-

tion given in (1), the search space is determined as

() () () (){ }1,1 , 1,3 , 3,3P =T .

The matching rules of the given packet are identified

by accessing the hash tables of these three tuples.

3.3 Bloom Filter Theory

As a simple bit vector, a Bloom filter is a space-

efficient probabilistic data structure that is used to test

whether an element is a member of a set [25, 26]. Bloom

filter theory supports two different operations:

programming and querying. Programming is a procedure

that stores membership information in a Bloom filter.

Querying is a procedure that tests whether a given input is

a member of the set.

Let M be the length of the Bloom filter, and let N be

the number of elements programmed into the Bloom filter.

The number of hash indices, K , used in programming the

Bloom filter is known to be optimum when it has the

following relationship [25]:

2log

ln 2
2

N

M
K = (2)

Before programming, every bit location of the Bloom

filter is initialized to zero. The procedure to program

element x into the Bloom filter follows:

Table 1. The rule set example.

Rule No. Source Prefix Destination Prefix Tuple Space

0
R 0* 1* (1, 1)

1
R 1* 110* (1, 3)

2
R 01* 00* (2, 2)

3
R 0* 111* (1, 3)

4
R 111* 110* (3, 3)

5
R 010* 110* (3, 3)

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 1, February 2017

31

Algorithm 1. Bloom Filter Programming

1: Bloom_Filter_Programming(x)

2: for (i = 1 to K)

3: BF[(
i
h x)] = 1;

For each element x included in a set, K different

hashing indices, (
i
h x), are obtained in such a way that the

resulting hash index m is in the range 0 m M≤ < . All of

the bit locations corresponding to the K hash indices are

set to 1 in the Bloom filter.

The procedure to query whether input y is a member of

the set is as follows:

Algorithm 2. Bloom Filter Querying

1: Bloom_Filter_Querying (y)

2: for (i = 1 to K)

3: if (BF[(
i
h y)] = = 0) return negative;

4: return positive;

For input y , K hash indices are generated using the

same hash functions that were used to program the filter.

The bit locations in the Bloom filter corresponding to the

hash indices are checked. If at least one of the locations is

0, then it is absolutely not a member of the set. If it was a

member of the set, the bit location corresponding to the

hash index would have been set to 1 during programming.

This result is negative. If all the bit locations are set to 1, it

is positive. However, even if all these bit locations are set

to 1, it does not mean that they were set only by the

elements under query. It is possible that these locations

could have been set by some other elements. This type of

positive result is a false positive. On the whole, a Bloom

filter may produce false positives, but does not produce

false negatives.

4. Proposed Architecture

This section describes our approach to the multi-match

packet classification problem. Our strategy is to design an

efficient architecture that provides reduced power

consumption and a high lookup speed. In regards to

reducing the power requirements, TCAM size should be

small, and the required number of TCAM lookups for each

packet should be limited to one. Our approach combines

the tuple space–based algorithm with TCAM.

The proposed architecture is composed of three parts:

TCAM for each field, a tuple-pruning unit, and multiple

small SRAM modules employing hash tables. In our

approach, TCAM includes every distinct value of each

field. The longest matching prefix is generated through the

individual field search using TCAM. The issues facing us

now are how to combine the results from each field search

and to identify the matching rules. We use the tuple space

approach to combine the individual search results, and we

propose using a Bloom filter to remove unnecessary tuples.

Hash tables using SRAM are accessed in parallel for the

tuples determined as positive by the Bloom filter to

produce matching results.

The tuple-pruning unit is composed of prefix vector

SRAM (PV-SRAM), a bit-operation block, and a tuple

Bloom filter. The prefix vector represents the prefix

containments of distinct values of a field in a given rule set

[27]; each PV-SRAM entry includes the prefix vector of

the corresponding TCAM entry. For example, if there are

prefixes 0*, 01*, and 010* in a field, the prefix vectors

corresponding to those prefixes are 100, 110, and 111,

respectively. The prefix vector 111 means that prefix 010*

has nested prefixes of lengths 1, 2, and 3 (itself). The

prefix vector is different from the bit vector [9, 19]; the

size of a prefix vector is equal to the longest prefix (which

is 32 bits for IPv4), whereas the size of a bit vector is equal

to the number of rules [19] or the number of TCAM entries

[9]. The bit-operation block calculates the cross product of

the prefix vectors and the intersection with active tuples, as

seen in (1). The tuple Bloom filter removes redundant

tuples so that unnecessary SRAM accesses are avoided.

Rules included in tuple space are stored in a hash table. A

directive for rule treatment is also stored in the hash table

along with each rule.

Fig. 1 shows the proposed architecture for the example

rule set given in Table 1. For the same example

packet, ()0100, 1110P = the Source-TCAM and

Destination-TCAM produce the best matching prefixes,

010* and 111*, respectively. The corresponding prefix

vectors are 111 and 101, respectively. By calculating the

cross product of these two prefix vectors and with the

intersection operation, which is represented by a two-

dimensional vector operation in the tuple-pruning unit

shown in Fig. 1, the search space is determined as

() () () (){ }1,1 , 1,3 , 3,3P =T .

The tuple-pruning algorithm is efficient in reducing the

number of tuples to search; however, it can be further

improved. In our example, accessing the hash table of

tuple (3, 3) is unnecessary, since no rule in tuple (3, 3) of

Table 1 matches the given input. Since the input matches

the three-bit prefix of
5
R in the first field and the three-bit

prefix of
3

 R in the second field, the tuple (3, 3) was not

excluded, even though there is no matching rule combining

those two prefixes. The tuple (3, 3) in this example is

termed a false tuple; false tuples are removed through the

use of a simple Bloom filter in our proposed architecture.

Let ()()PB �T represent the positive set obtained by

applying the tuple Bloom filter to the tuple set, ()PT .

Since some false tuples are removed by the tuple Bloom

filter, we obtain: ()() ()P P⊂B T � T .

Any arbitrary hash generator can be used to program

the Bloom filter. The Bloom filter needs to accommodate

prefixes of arbitrary lengths in a single Bloom filter, and

hence, it requires a hash generator that produces hash

indices for variable-length prefixes. A cyclic redundancy

check (CRC) generator has excellent characteristics for our

purposes [21]. The CRC generator scrambles the bits of a

Lim et al.: Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

32

given input and produces a fixed-length binary sequence

known as a CRC code, regardless of the prefix length. Any

number of hash indices (each of which is used as a pointer

to a Bloom filter bit location or to a hash table entry) can

be obtained from the generated CRC code by selecting

different combinations of bits.

For the classifier given in Table 1, we describe the

procedure used to program and query the Bloom filter. An

eight-bit CRC generator, as shown in Fig. 2, is used for

programming and querying the Bloom filter in this

example. Table 2 shows the hash key for the CRC

generator, the CRC code corresponding to the hash key,

and the Bloom filter indices. Registers of the CRC

generator are assumed to be initialized by 10001001 in this

example. The Bloom filter size, M , is assumed to be 32

bits, which is four times 2log
2 pN , where

p
N is the number

of distinct rules in source and destination prefix pairs from

Table 1. The number of hash indices programming the

Bloom filter is equal to three, according to (2). In this

example, we arbitrarily select a set of bits as hash indices.

The selected indices are bits [7:3], [6:2], and [4:0] of the

CRC code. The Bloom filter programming is completed by

setting the bits indicated by the column of Bloom filter

indices from Table 2.

Fig. 3 shows the Bloom filter programmed by the

indices shown in Table 2 for the example rules. For

example packet ()0100, 1110P = , a query to the Bloom

filter is performed for () () () (){ }1,1 , 1,3 , 3,3 .P =T The

hash key corresponding to the tuple (1, 1) is 01; the CRC

code is 11010011. Therefore, the hashing indices for the

tuple are 26, 20, and 19. Examining the bits of the Bloom

filter located by these indices, we obtain a positive result.

This means the possibility of a rule with (0*, 1*) in tuple

(1, 1), and hence, the hash table needs to be accessed for

this tuple. For the next tuple, (1, 3), the key and the

Fig. 1. The proposed multi-match packet classification architecture.

Table 2. The Bloom filter indices for the classifier given in Table 1.

Rule No. Source Prefix Destination Prefix Tuple Space Hash Key CRC code BF Indices

0
R 0* 1* (1, 1) 01 11010011 26, 20, 19

1
R 1* 110* (1, 3) 1110 00011010 3, 6, 26

2
R 01* 00* (2, 2) 0100 11110100 30, 29, 20

3
R 0* 111* (1, 3) 0111 10011101 19, 7, 29

4
R 111* 110* (3, 3) 111110 00110010 6, 12, 18

5
R 010* 110* (3, 3) 010110 10001001 17, 2, 9

Fig. 2. Eight-bit CRC generator.

Fig. 3. Tuple Bloom filter programmed by rules in Table 2.

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 1, February 2017

33

corresponding CRC code is 0111 and 10011101,

respectively, making the Bloom filter indices 19, 7, and 29.

Examining the bits of the Bloom filter located by these

indices, we obtain a positive result. Lastly, for the tuple

(3, 3), the key and the corresponding CRC code are

010111 and 00111000, respectively. The Bloom filter

indices are 7, 14, and 24. Examining the bits of the Bloom

filter located by these indices, we obtain a negative result,

since there is at least one zero in the bit locations. Hence,

the tuple (3, 3) is identified as a false tuple, and it is not

necessary to access the hash table for this tuple. In this

manner, the search space determined by the proposed

algorithm is reduced to ()() () (){ }1,1 , 1,3P =B �T .

Throughout this example, one false tuple was identified

by the Bloom filter, and hence, one SRAM access was

eliminated. The only drawback of the Bloom filter is that it

can have false positives; the false positive rate of a Bloom

filter can be controlled by increasing the size and number

of indices, as will be shown in the simulation section.

SRAM is accessed in parallel for ()()P =B T

() (){ }1,1 , 1,3 . Two matching rules are found in these two

tuples; rule
0
R in tuple (1, 1) and rule

3
R in tuple (1, 3).

The search procedure for the proposed algorithm is

summarized in Algorithm 3 for cases where two prefix

fields are used for the tuple-space search. The other rule

fields are stored in hash tables. Let 1P and 2P be the

source and destination addresses, respectively, of a given

input packet, P . Let (),jS P l be the sub-string of the

most significant l bits of jP .

For the source and destination addresses of a given

input packet, each TCAM produces an index for the

longest matching prefix of each field. This index is used

when accessing PV-SRAM. Using the prefix vector, prefix

lengths matching each given address, ()1PL and ()2P�L ,

are obtained. By calculating the cross product of the

matching lengths, a list of tuples, ()PC , is generated.

Bitwise AND the tuple list with the active tuple list of the

given rule set to obtain ()PT . For the tuples included

in ()P�T , the Bloom filter is queried. The tuples

determined positive by the tuple Bloom filter are included

in ()()PB �T . The hash tables are accessed for tuples in

()()PB �T , and multiple matching rules are identified.

Since TCAM power dissipation is directly related to

the number of entries and the number of TCAM lookups

needed for a classification, it is ideal to have small TCAM

modules and a limited number of TCAM lookups. Since

only the distinct values of each field are stored in TCAM,

the number of required TCAM entries is much smaller

than found in previous approaches. Each TCAM is

accessed once for each packet. Rules with entire rule fields

are stored in SRAM so that the port ranges of rules are

stored as they are, without being converted to multiple

prefixes. This results in no rule replication in our proposed

approach.

5. Simulation Results and Performance
Analysis

Classbench [28] has been widely used in generating

rule sets and input traces to evaluate the performance of

packet classification algorithms. Using Classbench, we

have generated three different types of five-dimensional

rule sets, an access control list (ACL), an Internet protocol

chain (IPC), and a firewall (FW), with about 1000 and

5000 rules. Input traces that have three times the number

of rules were also generated. In this simulation, two prefix

fields are used for tuple pruning. All the rule information

composed of every field was stored in SRAM hash tables;

each was compared with a given input when a hash entry

was accessed.

5.1 Rule Set Characteristics

Table 3 shows the characteristics of the rule sets. N is

the number of rules included in each rule set.
p

N is the

number of rules that possess distinct source and destination

prefix pairs. The FW has the smallest value of
p

N ; this

means that many rules share the same source–destination

Algorithm 3. Search procedure

1: Search (P) {

2: srcIndex = SrcTCAM (1P);

3: dstIndex = DstTCAM(2P);

4: ()1PL = SrcPV-SRAM(srcIndex);

5: ()2PL = DstPV-SRAM(dstIndex);

6: ()PC = () ()1 2P P⊗L L ;

7: ()PT = ()P∩A� �C ;

8: for all tuples (
1
l ,

2
l) ()P∈T {

9: hashKey = concat (() ()1 2

1 2
,S P l S P l ;

10: for all (1 i K≤ ≤) {

 // K is the optimum number of hash indices

11: hi = hash_generator(i , hashKey);

 queryResult = BF_query(
1 2
, ,

K
h h h⋯);

12: if (queryResult == positive)

13: Put (
1
l ,

2
l) into ()()PB �T ;

14: }

15: }

16: for all tuples () ()()1 2
,l l P∈B �T {

 // Perform in parallel

17: hashKey = concat () ()()1 2

1 2
,S P l S P l ;

18: index = hash_generator(hashKey);

19: Ri = SRAM(index);

20: if (P matches
i
R) return

i
R ;

21: }

22: }

Lim et al.: Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

34

prefix pair in the FW set. Let ()n A represent the number

of active tuples. For every rule set, the number of active

tuples is significantly smaller than the maximum number

of tuples (which is 1089). The ACL has the smallest (and

the IPC has the largest) number of active tuples. The IPC

has the largest number in both ()n A and .
p

N These

characteristics affect Bloom filter performance and hash

table performance, as will be shown.
s

N and
d

N are the

number of distinct values in the source field and the

destination prefix field, respectively, and they are the

required number of TCAM entries. They are significantly

smaller than N.

Table 4 shows tuple characteristics. The average

number of tuples remaining after tuple pruning [15],

()PT , is much smaller than the number of active tuples,

()n A in Table 3. We can see that the tuple-pruning

approach effectively prunes the number of tuples, and

thereby, effectively reduces the search space. T2_field

represents the average number of rules matching an input

packet in two prefix fields. T5_field is the average number

of rules matching an input packet in all five fields. These

matching rules are returned in the multi-match packet

classification.
T2_field is very close to T5_field, and hence, tuple

pruning using two prefix fields is sufficiently effective and

much simpler than using all five fields. When two prefix

fields are used for tuple pruning, the difference between

()PT and T2_field is the average number of false tuples.

It is large in IPC sets, which is close to 10 for the IPC5K

set. In our proposed architecture, a Bloom filter is queried

for ()PT , and we will show that the Bloom filter

removes the false tuples effectively.

5.2 Entry Structure

As shown in Section 5.1, for sets with N < 5000,
p

N

< 3000. The required memory for the tuple Bloom filter is

about 4 KB when the size of the Bloom filter is 8
'

p
N ,

where 2log' 2 pN

p
N = . This means that the Bloom filter can

easily be embedded into a forwarding ASIC.

Table 5 shows the entry structure for SRAM. As shown,

the width of the entry is 23 bytes. The total memory for

hash tables is less than 200 KB for rule sets with about

5000 rules, which is calculated as 2log2 N entries multiplied

by the width of the memory.

The required amount of SRAM is equal to the number

of active tuples, assuming they are accessed in parallel.

However, all of these hash tables are not necessarily

accessed in parallel. In our simulation, the number of

simultaneous accesses is 4 to 7 on average, and less than

20 in the worst case. All the rules can be stored in a single

hash table without separating them by tuples. Since the

required memory amount is small, if we have multiple

copies of the hash table for parallel access, then the

required amount of SRAM can be reduced to the worst

case number of positive tuples, which is 20. Even in this

case, the total amount of SRAM is less than 4 MB.

5.3 Comparison with other TCAM-based
Multi-match Architectures

Table 6 shows a comparison of our proposed

architecture to other algorithmic TCAM-based multi-

match packet classification architectures described in

Section 3.1. The previous approaches have trade-offs in

the amount of TCAM, the number of TCAM entries, or the

number of TCAM lookups. Our approach requires two

small TCAM modules, and the number of TCAM lookups

is only one per packet. Therefore, our approach is power-

efficient. These improvements come at the cost of multiple

Table 3. Rule set characteristics.

Rule Set N p
N ()n A

s
N

d
N

ACL 958 570 61 57 361

IPC 988 925 366 207 454 1K

FW 871 539 290 143 59

ACL 4660 2453 102 653 907

IPC 4468 2933 680 128 463 5K

FW 3067 1274 476 67 505

Table 4. Average number of tuples and rules.

Rule Set ()PT T2_field T5_field

ACL 4.45 2.87 2.73

IPC 4.94 1.53 1.19 1K

FW 7.63 5.41 4.02

ACL 6.87 3.87 3.29

IPC 15.29 5.41 4.00 5K

FW 8.16 6.15 5.67

Table 5. SRAM entry structure.

Field Number of bits

Entry Valid 1

Rule Number 14

Source Prefix Length 6

Source Prefix 32

Destination Prefix Length 6

Destination Prefix 32

Source Port Wild 1

Source Port Start 16

Source Port End 16

Destination Port Wild 1

Destination Port Start 16

Destination Port End 16

Protocol Wild 1

Protocol Type 8

Directive 18

Total 23 bytes

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 1, February 2017

35

small SRAM modules and parallel access to SRAM, but

this cost is insignificant, given that SRAM is much less

expensive and requires very little power. Several

approaches require very complicated pre-processing to

store the rules in TCAM, either in identifying the

intersections of the rules [6] or in separating them into

multiple groups [7, 11], resulting in a high update cost

with these approaches. The pre-processing requirements of

our approach is to calculate prefix vectors and store them

into PV-SRAM, and to program a Bloom filter using two

prefix fields of each rule. This process is much simpler

than that found in other approaches. All of the other

approaches shown in Table 6 have a port range problem,

since all of the rule fields are stored in TCAM, whereas

our approach does not have this problem, since the port

range fields are stored in SRAM.

5.4 Comparison with Other Algorithmic
Approaches

Our proposed architecture was compared with other

algorithmic approaches that enable multi-match packet

classification. Among various algorithms that have been

developed for single best–match packet classification,

decision tree–based algorithms such as hierarchical

intelligent cutting (HiCuts) [17] and multi-dimensional

hierarchical cutting (HyperCuts) [18] also provide a multi-

match classification capability.

In building HiCuts and HyperCuts, spfac was set at 2 in

this simulation. Table 7 shows the HiCuts and HyperCuts

characteristics for an arbitrary value of binth. As shown in

the copy factor, f, a rule is replicated many times.

Figs. 4 and 5 show a search performance comparison

using the average number of memory accesses and the

worst-case number of memory accesses, respectively. For

a fair comparison with HiCuts and HyperCuts, it was

assumed that a single SRAM module is used in our

proposed architecture (and the tuple-pruning algorithm

[15]). Hence, a number of tuples are serially probed. Rules

with the same source and destination prefixes are mapped

to the same hash entry, and they are stored in a linked list.

These entries are linearly probed. Hence, the number of

memory accesses becomes worse than the number in

T2_field. The search performance of HyperCuts is

significantly worse than HiCuts in the FW and IPC sets

because of the optimization of common rules pushing

upward. The figures show that the proposed architecture

provides slightly better search performance than the tuple-

pruning algorithm [15] and much better performance than

the decision-tree algorithms [17, 18] in most cases.

Table 8 shows the required SRAM. In this simulation,

the number of hash entries is four times the number of

rules, which is 2log4 2 N× , in order to reduce the number of

rules mapped to the same entry. Each hash entry is 23

bytes, as shown in Table 5. For our proposed algorithm,

the memory amount for the PV-SRAM, which is

()2 2log log
4 2 2s dN N
× + bytes, and the memory amount for

the Bloom filter, which is 4000 bytes, are additionally

required. The tuple-pruning algorithm and the proposed

algorithm require two TCAM modules storing distinct

source prefixes and distinct destination prefixes, whereas

Table 6. Comparison of the proposed algorithm to other TCAM-based approaches.

Approaches MUD[5] GIS[6] SSA[7] MX-MN[8] Proposed

No. of TCAM

Modules
1 1 2 or 4 > thousands 2

No. of TCAM

Entries (in N)
1 > 10 times > 1.2 times 1 << 1

No. of TCAM

Lookups
about 20 1 1 1 1

No. of SRAM

Modules
1 1 1 1 20

Pre-processing

Complexity
low high very high very high low

Update Cost low high medium low low

Port Range Problem Yes Yes Yes Yes No

Table 7. Decision-tree characteristics of HiCuts [17] and HyperCuts [18].

HiCuts HyperCuts 1 HyperCuts 2
Rule N binth

Dt f Dt f Dt f

ACL1k 958 6 66 19.6 17 5.2 35 9.8

ACL5k 4660 13 34 16.2 13 7.0 23 10.3

IPC1k 988 5 70 11.0 22 3.3 30 11.8

IPC5k 4468 15 67 201.8 19 96.8 22 490.5

FW1k 871 11 64 97.5 22 9.2 25 70.3

FW5k 3067 17 63 393.4 18 47.1 19 878.3

Lim et al.: Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

36

Fig. 4. Comparison of the average number of memory
accesses (a) ACL, (b) IPC, (c) FW.

Fig. 5. Comparison of the worst-case number of
memory accesses (a) ACL, (b) IPC, (c) FW.

Table 8. Comparison of the required SRAM amount per rule with other algorithmic approaches (MB).

Rule Set Tuple Pruning [15] HiCuts [17] HyperCuts [18] Proposed

ACL 0.092 0.968 0.172 0.098

IPC 0.092 0.603 0.119 0.099 1K

FW 0.092 2.830 0.226 0.097

ACL 0.74 2.190 0.885 0.752

IPC 0.74 26.58 11.08 0.746 5K

FW 0.37 36.19 3.680 0.376

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 1, February 2017

37

decision-tree algorithms do not require TCAM. However,
since rules are replicated many times in the decision-tree
algorithms, the required SRAM amount is excessive, and
hence, SRAM cannot be embedded in an ASIC.

6. Conclusion

Multi-match packet classification is becoming an
essential feature that routers need to perform at wire speed
for every incoming packet in order to support new
emerging applications. This paper proposes a new
algorithmic approach to the multi-match classification
problem. Our proposed architecture is a power-efficient
solution combining TCAM with a tuple-pruning algorithm.
TCAM is used for individual field search in our proposed
architecture; we propose the use of a TCAM index, which
is the single best–matching result for each field, in order to
obtain prefix vectors. The prefix vectors for each field are
combined to make the list of tuples. Since the list may
include false tuples, we also present a way to eliminate
them by using a Bloom filter. For the list of tuples deemed
positive by the Bloom filter, SRAM is accessed in parallel;
the packet-treating directive is obtained by matching rules
from SRAM access. Therefore, the proposed multi-match
packet classification architecture requires a single TCAM
lookup cycle, two SRAM access cycles (one for the prefix
vector, and one for the tuple search), and several Bloom
filter query cycles. Regarding the power consumption
issue, our proposed approach reduces TCAM power by
utilizing small amounts of TCAM and by accessing each
TCAM entry only once for each packet. Port ranges are
stored as they are in SRAM, resulting in no rule replication.

Acknowledgement

This research was supported by the National Research
Foundation of Korea, NRF2014R1A2A1A11051762 and
NRF- 2015R1A2A1A15054081. This research was also
supported by MSIP, Korea, under the ITRC support
program (IITP-2016-H8501-15-1007) supervised by IITP.

References

[1] H. J. Chao, “Next generation routers,” Proceedings of

the IEEE, vol. 90, no. 9, pp. 1518–1558, Sep. 2002.
Article (CrossRef Link)

[2] K. Vlaeminck, T. Stevens, W. V. D. Meerssche, F. D.
Turck, B. Dhoedt, and P. Demeester, “Efficient
packet classification on network processors,”
International Journal of Communication Systems, vol.
21, no. 1, pp.51–72, Jan. 2008. Article (CrossRef
Link)

[3] P.-C. Wang, “Scalable packet classification using a
compound algorithm,” International Journal of
Communication Systems, vol. 23, no. 6, pp.841–860,
Jun. 2010. Article (CrossRef Link)

[4] D. Adami, C. Callegari, S. Giordano, M. Pagano, and
T. Pepe, “Skype-Hunter: a real-time system for the

detection and classification of Skype traffic,”
International Journal of Communication Systems, vol.
25, no. 3, pp.386–403, Mar. 2012. Article (CrossRef
Link)

[5] K. Lakshminarayanan, A. Rangarajan, and S.
Venkatachary,“Algorithms for advanced packet
classification with ternary CAMs,” Proc. ACM
SIGCOMM, pp. 193–204, 2005. Article (CrossRef
Link)

[6] F. Yu, R. H. Katz, T. V. Lakshman, “Efficient
multimatch packet classification and lookup with
TCAM,” IEEE Micro, vol. 25, no. 1, pp. 50–59,
Jan/Feb. 2005. Article (CrossRef Link)

[7] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H.
Katz, “Efficient multimatch packet classification for
network security applications,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 10,
pp. 1805–1816, Oct. 2006. Article (CrossRef Link)

[8] M. Faezipour and M. Nourani, “Wire-speed TCAM-
based architectures for multimatch packet
classification,” IEEE Trans. on Computers, vol. 58,
no.1, pp. 5–17, Jan. 2009. Article (CrossRef Link)

[9] H. Song and J.W. Lockwood, “Efficient packet
classification for network intrusion detection using
FPGA,” Proc. ACM SIGDA FPGA, pp. 238–245,
2005. Article (CrossRef Link)

[10] X. Deng, Z. Huang, S. Su, C. Liu, G. Tang, and Y.
Zhang, “A sequence encoding scheme for multi-
match packet classification,” Proc. NSWCTC, pp.
641–644, 2009. Article (CrossRef Link)

[11] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H.
Katz, “SSA: A power and memory efficient scheme
to multimatch packet classification,” Proc. ANCS
Conf., pp. 105–113, 2005. Article (CrossRef Link)

[12] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM
razor: a systematic approach towards minimizing
packet classifiers in TCAMs,” IEEE/ACM Trans. on
Networking, vol. 18, no. 2, pp. 490–500, Feb. 2010.
Article (CrossRef Link)

[13] M. Faezipour and M. Nourani, “CAM01-1: a
customized TCAM architecture for multi-match
packet classification,” Proc. IEEE Globecom, pp. 1–5,
2006. Article (CrossRef Link)

[14] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES:
dynamic range encoding scheme for TCAM,” IEEE
Trans. on Computers, vol. 57, no.7, pp. 902–915, Jul.
2008. Article (CrossRef Link)

[15] V. Srinivasan, S. Suri, and G. Varghese, “Packet
classification using tuple space search,” ACM
SIGCOMM Computer Communication Review, vol.
29, no. 4, pp. 135–146, 1999. Article (CrossRef Link)

[16] H. Lim and S. Kim, “Tuple pruning using Bloom
filters for packet classification,” IEEE Micro, vol. 30,
no.3, pp. 48–58, May/Jun. 2010. Article (CrossRef
Link)

[17] P. Gupta and N. Mckeown, “Classification using
hierarchical intelligent cuttings,” IEEE Micro, vol. 20,
no. 1, pp. 34-41, Jan./Feb., 2000. Article (CrossRef
Link)

[18] S. Singh, F. Baboescu, G. Varghese, and J. Wang,
“Packet classification using multidimensional

Lim et al.: Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

38

cutting,” Proc. SIGCOMM, 2003. Article (CrossRef
Link) T. V. Lakshman and D. Stidialis, “High-speed
policy-based packet forwarding using efficient multi-
dimensional range matching,” Proc. ACM
SIGCOMM, pp. 203–214, Oct. 1998. Article
(CrossRef Link)

[19] F. Baboescu, S. Singh, G. Varghese, “Packet
classification for core router: is there an alternative to
CAMs?,” Proc. IEEE INFOCOM, vol. 1, pp. 53–63,
Mar. 2003. Article (CrossRef Link)

[20] G. Priya and H. Lim, “Hierarchical packet
classification using a Bloom filter and rule-priority
tries,” Computer Communications, vol. 33, no. 10, pp.
1215–1226, Jun. 2010. Article (CrossRef Link)

[21] H. Lim, H. Chu, and C. Yim, “Hierarchical binary
search tree for packet classification,” IEEE
Communications Letters, vol. 11, no. 8, pp. 689–691,
Aug. 2007. Article (CrossRef Link)

[22] H. Lim, M. Kang, and C. Yim, “Two-dimensional
packet classification algorithm using a quad-tree,”
Computer Communications, vol. 30, no.6, pp. 1396–
1405, Mar. 2007. Article (CrossRef Link)

[23] V. Srinivasan, G. Varghese, S. Suri, and M.
Waldvogel, “Fast and scalable layer four switching,”
Proc. ACM SIGCOMM, pp. 191–202, 1998. Article
(CrossRef Link)

[24] S. Dharmapurikar, P. Krishamurthy, and D. E. Taylor,
“Longest prefix matching using bloom filters,”
IEEE/ACM Transactions on Networking, vol. 14, no.
2, pp. 397–409, April 2006. Article (CrossRef Link)

[25] H. Lim, J. Lee, and C. Yim, “Complement Bloom
Filter for Identifying True Positiveness of a Bloom
Filter," IEEE Communications Letters, vol. 19, no. 11,
pp. 1905-1908, Nov. 2015. Article (CrossRef Link)

[26] H. Lim, H. Kim, and C. Yim, “IP address lookup for
Internet routers using balanced binary search with
prefix vector,” IEEE Trans. on Communications, vol.
57, no. 3, pp. 618–621, Mar. 2009. Article (CrossRef
Link)

[27] D. E. Taylor and J. S. Turner, “Classbench: a packet
classification benchmark,” IEEE/ACM Trans. on
Networking, vol. 15, no.3, pp. 499–511, June 2007.
Article (CrossRef Link)

Hyesook Lim received the B.S. and
M.S. degrees at the Department of
Control and Instrumentation Engineering
in Seoul National University, Seoul,
Korea, in 1986 and 1991, respectively.
She received the Ph.D. degree at the
Electrical and Computer Engineering
from the University of Texas at Austin,

Texas, in 1996. From 1996 to 2000, she had been
employed as a member of technical staff at Bell Labs in
Lucent Technologies, Murray Hill, NJ, USA. From 2000
to 2002, she had worked as a hardware engineer for Cisco
Systems, San Jose, CA, USA. She is currently a professor
in the Department of Electronics Engineering, Ewha
Womans University, Seoul, Korea, where she perform
research on packet forwarding algorithms such as IP
address lookup and packet classification, and in Content
Centric Networks. She was awarded Year 2014 Women in
Sciences and Technologies by the Ministry of Science,
ICT and Future Planning of Korea. She is a senior member
of the IEEE.

Nara Lee received the B.S. and M.S.
degrees in electronics engineering
from Ewha Womans University, Seoul,
Korea, in 2009 and 2012, respectively.
She is currently a Research Engineer
with the IP Technical Team, DTV SoC
Department, SIC Lab, LG Electronics,
Inc., Seoul, Korea. Her research

interests include various network algorithms such as IP
address lookup, packet classification, Web caching, and
Bloom filter application to various distributed algorithms.

Jungwon Lee received the B.S. degree
in Mechatronics Engineering from Korea
Polytechnic University, Gyeonggi-do,
Korea, in 2011 and M.S. degree at the
Department of Electronics Engineering
at Ewha Womans University, Seoul,
Korea, in 2013. She is currently
pursuing a Ph.D. degree from the

Department of Electronics Engineering at Ewha Womans
University. Her research interests include address lookup,
packet classification algorithms, and packet forwarding
using Bloom filters at Content-Centric Networks.

Copyrights © 2017 The Institute of Electronics and Information Engineers

