• Title/Summary/Keyword: package method

Search Result 1,419, Processing Time 0.034 seconds

Board Level Reliability Evaluation for Package on Package

  • Hwang, Tae-Gyeong;Chung, Ji-Young
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2007.04a
    • /
    • pp.37-47
    • /
    • 2007
  • Factor : Structure Metal pad & SMO size Board level TC test : - Large SMO size better Board level Drop test : - Large SMO size better Factor : Structure Substrate thickness Board level TC test : - Thick substrate better Board level Drop test : - Substrate thickness is not a significant factor for drop test Factor : Material Solder alloy Board level TC test : - Not so big differences over Pb-free solder and NiAu, OSP finish Board level Drop test : - Ni/Au+SAC105, CuOSP+LF35 are better Factor : Material Pad finish Board level TC test : - NiAu/NiAu is best Board livel Drop test : - CuOSP is best Factor : Material Underfill Board level TC test - Several underfills (reworkable) are passed TCG x500 cycles Board level Drop test : - Underfill lots have better performance than non-underfill lots Factor : Process Multiple reflow Board level TC test : - Multiple reflow is not a significant actor for TC test Board level Drop test : N/A Factor : Process Peak temp Board level TC test : - Higher peak temperature is worse than STD Board level Drop test : N/A Factor : Process Stack method Board level TC test : - No big difference between pre-stack and SMT stack Board level Drop test : - Flux dipping is better than paste dipping but failure rate is more faster

  • PDF

A Study on the/ Correlation Between Board Level Drop Test Experiment and Simulation

  • Kang, Tae-Min;Lee, Dae-Woong;Hwang, You-Kyung;Chung, Qwan-Ho;Yoo, Byun-Kwang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • Recently, board level solder joint reliability performance of IC packages during drop impact becomes a great concern to semiconductor and electronic product manufacturers. The handheld electronic products are prone to being dropped during their useful service life because of their size and weight. The IC packages are susceptible to solder joint failures, induced by a combination of printed circuit board (PCB) bending and mechanical shock during impact. The board level drop testing is an effective method to characterize the solder joint reliability performance of miniature handheld products. In this paper, applying the JEDEC (JESD22-B111) standard present a finite element modeling of the FBGA. The simulation results revealed that maximum stress was located at the outermost solder ball in the PCB or IC package side, which consisted well with the location of crack initiation observed in the failure analysis after drop reliability tests.

A Study on the Thickness Measurement of Thin Film and the Flaw Detection of the Interface by Digital Signal Processing (디지털 신호처리에 의한 박판두께측정 및 접합경계면의 결함검출에 관한 연구)

  • Kim, Jae-Yeol;Yiu, Shin;Kim, Byung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.123-127
    • /
    • 1997
  • Recently, it is gradually raised necessity that interface is measured accurately and managed in industrial circles and medical world, An Ultrasonic wave transmitted from a focused beam transducer is being expected as a powerful tool for NDE of micro-defect. The ultrasonic NDE of the defect is based on the form of the wave reflected form the interface In this study, regarding to the thickness of film which is in opaque object and thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measument results, film thickness which is beyond distance resolution capacity was measured accurately. Also, automatically repeated discrimination analysis method can be decided in the category of all kinds of defects on semiconductor package.

  • PDF

A study on the stress distribution and nugget formation in resistance welding process using computer simulation (컴퓨터 시뮬레이션을 이용한 저항용접에 관한 연구)

  • 함원국
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.41-51
    • /
    • 1991
  • The thermomechanical coupling phenomena in the resistance welding process is complicated due to interactions of mechanical, thermal and electrical factors. Although experimental investigations of resistance spot welding have been carried out, but there are a few by computer simulation. so the purpose of this research is to decrease the time and cost much required in experimental investigation by carrying out the analysis of the resistance spot welding process through computer simulation based on the finite element method. The tool used in the computer simulation is the commercial ANSYS program package. A two dimensional axisymetric model is used to simulate the resistance spot welding for two stainless steel sheets of equal thickness and parametric study is carried out for variable welding current, workpieces of unequal thickness and dissimilar materials. The results from the computer simulation are in good agreement with the experimental one. Through these results, such items as stress distribution, temperature profiles, thermal expansion and weld nugget formation are predicted. Reliability and applicability of finite element models have been demonstrated to simulate and to analyze the resistance spot welding process.

  • PDF

A Study on Improving the Efficiency of a Heat Dissipation Design for 30 W COB LED Light Source (30 W COB LED광원의 효율 개선을 위한 방열설계에 관한 연구)

  • Seo, BumSik;Lee, KiJoung;Cho, Young Seek;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • In this paper, thermal analysis of heatsink for 30 W class Chip-on-Board (COB) LED light source is performed by using SolidWorks Flow Simulation package. In order to increase the convection heat transfer, number of fin and shape of the heatsink is optimized. Furthermore, a copper spread is applied between the COB LED light source and the heatsink to mitigate the heat concentration on the heatsink. With the copper spread, the junction temperature between the COB LED light source and the heatsink is $50.9^{\circ}C$, which is $5.4^{\circ}C$ lower than the heatsink without the copper spread. Due to the improvement of the junction temperature, the light output is improved by 5.8% when the LED light source is stabilized. The temperature difference between the simulation and measured result of the heatsink with the copper spread is within $2^{\circ}C$, which verifies the validity of the thermal design method using a simulation package.

Thermo-ompression Process for High Power LEDs (High Power LED 열압착 공정 특성 연구)

  • Han, Jun-Mo;Seo, In-Jae;Ahn, Yoomin;Ko, Youn-Sung;Kim, Tae-Heon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.355-360
    • /
    • 2014
  • Recently, the use of LED is increasing. This paper presents the new package process of thermal compression bonding using metal layered LED chip for the high power LED device. Effective thermal dissipation, which is required in the high power LED device, is achieved by eutectic/flip chip bonding method using metal bond layer on a LED chip. In this study, the process condition for the LED eutectic die bonder system is proposed by using the analysis program, and some experimental results are compared with those obtained using a DST (Die Shear Tester) to illustrate the reliability of the proposed process condition. The cause of bonding failures in the proposed process is also investigated experimentally.

The Use of a Biplot in Studying the Career Maturity of College Freshmen (행렬도를 이용한 대학 신입생의 진로의식 분석)

  • Choi, Hye-Mi;Park, Chan-Yong;Lee, Sang-Hyeop;Chung, Sung-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.933-941
    • /
    • 2010
  • Biplot is a modern graphical methodology allowing for the projection of high-dimensional data to a low-dimensional subspace that is rich in information on variation in the data, correlation among variables as well as class separation. For the construction of biplots, we use a BiplotGUI package in a free statistical software R with increasing popularity. Moreover, using data from questionnaires given to Chonbuk National University freshmen in 2009, the relationship between career goals and career maturity are studied by applying the biplot method.

Analysis of the thermal management of a high power LED package with a heat pipe

  • Kim, Jong-Soo;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.96-101
    • /
    • 2016
  • The thermal management of high-power LED components in an assembly structure is crucial for the stable operation and proper luminous function. This study employs numerical tools to determine the optimum thermal design in LEDs with a heat sink consisting of a crevice-type vapor-chamber heat pipe. The effects of the MCPCB are investigated in terms of the substrate thicknesses on which the LEDs are mounted. Further, different placement configurations in a system module are considered. This study found that for a confined area, a power of 40 W/LED is applicable to a high-power package. Furthermore, the thermal conductivity of dielectric layer materials should ideally be greater than 0.9 W/m.K. The temperature conditions of the vapor chamber in a heat pipe greatly affect the thermal performance of the system. At an offset distance of 9.0 mm and a $2^{\circ}C$ increase in the temperature of the heat pipe, the resulting maximum temperature increase is approximately $1.9^{\circ}C$ for each heat dissipation temperature. Finally, at a thermal conductivity of 0.3 W/m.K, it was found that the total thermal resistance changes dramatically. Above 1.2 W/m.K, the resistance change reduces exponentially.

Implementation of a Flexible Architecture for a Mobile Power Cart Applying Design Patterns (설계 패턴을 이용한 모바일 파워 카트의 유연한 아키텍처 구현)

  • Lee, Jong Min;Kim, Seong Woo;Kwon, Oh Jun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.747-755
    • /
    • 2016
  • Automated guided vehicles have been used for a long time to increase work efficiency in the logistics field, but it is difficult to apply to a variety of logistics sites due to either the restricted movement mechanism or expensive devices. In this paper, we present a flexible software architecture that is hardware-independent for a mobile power cart of the follow mode and implement it using a ROS software platform. Through the SCV analysis for the system functionalities, we design a package to track a user movement and a package to control a new hardware platform. It has an advantage to use a variety of movement algorithms and hardware platforms by applying the strategy pattern and the template method pattern for the design of a software architecture. Through the performance evaluation, we show that the proposed design is maintainable in terms of a software complexity and it detects a user's movement by obtaining a user skeleton information so that it can control a hardware platform to move at a certain distance.

Extrusion Process Analysis of Al/Cu Clad Composite Materials by Finite Element Method (유한요소법을 이용한 Al/Cu 층상복합재료의 압출공정해석)

  • 김정인;강충길;권혁천
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.87-97
    • /
    • 1999
  • A clad material is a different type of the typical composites which are composed of two or more matericals joined at their interface surface. The advantge of cald material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneously. This paper is concerned with the direct and indirect extrusion processes of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copperclad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and mean stress for sheath thicknesses, die exit diameters and die temperatures.

  • PDF