• Title/Summary/Keyword: pH-sensitive polymer

Search Result 58, Processing Time 0.06 seconds

pH-dependent Swelling Properties of Methacrylic Acid Copolymer Hydrogels (pH 의존성 Methacrylic acid 공중합체의 팽윤특성)

  • Kim, Kyung-Chung;Lee, Seung-Jin
    • YAKHAK HOEJI
    • /
    • v.33 no.6
    • /
    • pp.372-376
    • /
    • 1989
  • Equilibrium swelling and pH-sensitivity of a polyelectrolyte copolymer hydrogel were controlled by employing copolymers with different hydrophilic-hydrophobic balances. Model pH-sensitive hydrogels, e.g., poly(methacrylic acid), poly(methacrylic acid-co-acrylamide), poly(methacrylic acid-co-2-hydroxyethylmethacrylate), poly(methacrylic acid-co-styrene) were synthesized at various monomer compositions. As hydrophobicity of the copolymer hydrogels increased, the equilibrium swelling decreased while the pH-sensitivity increased. In the case of poly(methacrylic acid-co-acrylamide), polymer-polymer interaction significantly affected the equilibrium swelling and provided a wide range control of pH-sensitivity.

  • PDF

Synthesis and Characterization of pH-sensitive and Self-oscillating IPN Hydrogel in a pH Oscillator (pH 진동계 안에서 pH 감응성 자기진동 IPN 하이드로젤의 합성과 분석)

  • Wang, Liping;Ren, Jie;Zhang, Xiaoyan;Yang, Xiaoci;Yang, Wu
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.359-364
    • /
    • 2015
  • A self-oscillating interpenetrating polymer network (IPN) poly(acrylic acid)/poly(ethylene glycol) (PAA/PEG) hydrogel was prepared by using radical polymerization with a two-step method. The IPN hydrogel was characterized by FTIR spectroscopy and morphological analysis. The results indicated that the chains of PEG and PAA twined to form porous structure which is beneficial to water molecules entering inside of the hydrogel. In addition, the pH-responsive behavior, salt sensitivity, swelling/de-swelling oscillatory behaviors and self-oscillation in a closed pH oscillator were also studied. The results showed that the prepared hydrogel exhibited pH-sensitivity, good swelling/de-swelling reversibility and excellent salt sensitivity. The self-oscillating behavior of swelling/de-swelling for the prepared hydrogel was caused by pH alteration coupled with the external media. This study may create a new possibility as biomaterial including new self-walking actuators and other related devices.

Drug Release from Ph-sensitive Interpenetrating Polymer Net-works Hydrogel Based on Poly(ethylene glycol) Macromer and Poly (acrylic acid)Prepared by UV Cured Method

  • Kim, In-Sook;Kim, Sung-Ho;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 1996
  • Acrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with acryloyl chloride. Photopolymerization of PEG macromer resulted in the formation of cross-linked PEG network. Interpenetrating polymer networks (IPNs) based on PEG and poly(acrylic acid) (PAA) was obtained via template polymerization of AA to the PEG network by UV curing. The swelling degree of the IPNs hydrogel increased with an increase of pH value due to the association-dissociation between carboxylic acid of PAA and either of PEG through hydrogen bounding. The swelling-deswelling behavior proceeded reversibly for the IPNs upon changing pH. Release of indomethacin from the IPNs demonstrated "on-off" regulation with pH fluctuation.

  • PDF

pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels (글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동)

  • Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.299-304
    • /
    • 2005
  • There have been many efforts to use anionic hydrogels as oral protein delivery carriers due to their pH-responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) [P(MAA-co-MEG)] hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation $M_t/M_{\infty}=kt^n$ was used to calculate the exponent, n, describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in the swelling medium of pH 7.0 that was higher than the $pK_a$ of the gels. Experimental results of time-dependent swelling behavior of the gels were analyzed with several mathematical models. Using ATR-FTIR spectroscopy, the effect of ionization of the carboxylic acid groups in the polymer networks on the water transport mechanism was investigated.

pH-Dependent Drug Release from Polymethacrylic Acid Hydrogel Matrix (Polymethacrylic Acid 하이드로겔 매트릭스로부터의 pH 의존성 약물 방출)

  • Kim, Kyung-Chung;Kim, Kil-Soo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.179-183
    • /
    • 1989
  • Drug release experiments were performed based on pH-sensitive swelling behaviors of polymethacrylic acid. 5-Fluorouracil as a nonionic model drug revealed release patterns depending solely on pH-dependent swelling kinetics of polymethacrylic acid. In contrast, release of propranolol hydrochloride as a cationic model drug was significantly affected by ionic drug-polymer interaction as well as the swelling kinetics. Accordingly, a zero-order release pattern was obtained at pH 7, which was distinguished from the general matrix type drug release pattern.

  • PDF

Effect of Water State in Electroactive Chitosan/Poly (Diallyldimethylammonium Chloride) Hydrogels on Bending Behavior at Various pH Conditions (키토산/폴리디아릴디메틸암모늄클로라이드 전기감응성 고분바 하이드로겔의 굽힘 거동에서 물 상태에 따른 영향 분석)

  • Yoon, Seong-Gil;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.344-347
    • /
    • 2007
  • A interpenetrating polymer network (IPN) hydrogel, composed of chitosan (CS) and poly(diallydimethylammonium chloride) (PDADMAC) was prepared, which exhibited electrical sensitive behavior. The swelling behavior of the CS/PDADMAC SIPN hydrogel was studied by immersion of the gel into various pH buffer solutions, and their stimuli response in electric fields also investigated. In order to clarify the relationship between the equilibrium swelling ratio and bending behavior of the SIPN hydrogels, the state of water in the SIPN hydrogel was also investigated using differential scanning calorimetry (DSC).

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF

Preparation and Characterization of Novel Temperature and pH Sensitive (NIPAM-co-MAA) Polymer Microgels and Their Volume Phase Change with Various Salts (pH 감응성 NIPAM-co-MAA 고분자 마이크로젤의 제조 및 분석과 염 종류에 따른 부피상 변화)

  • Khan, Mohammad Saleem;Khan, Gul Tiaz;Khan, Abbas;Sultana, Sabiha
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.794-801
    • /
    • 2013
  • Novel microgels of N-isopropylacrylamide (NIPAM)-co-methacrylic acid (MAA) (NIPAM-co-MAA) with different contents of N,N-methylene bis acrylamide (MBA) were prepared by emulsion polymerization technique and were studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and zeta potential measurement. Effect of pH, temperature and different salts concentration on the microgel particles was investigated. DLS results have shown that the hydrodynamic radius of the microgel increased upon increasing pH and decreased upon increasing temperature. The swelling/deswelling behaviors as determined by DLS showed the ionic repulsions of the carboxyl group of the methacrylic acid and hydrophobic interaction of NIPAM. The effect of various salts on volume phase transition temperature (VPTT) was also investigated. Upon increasing salt concentration, VPTT became broad and shifted to a lower temperature. Electrophoretic mobility measurements showed an increase with increasing pH and temperature at a constant ionic strength.