• Title/Summary/Keyword: pH of drainage

Search Result 286, Processing Time 0.027 seconds

Study on the Oxidation Process of Potential Acid Sulfate Soil (잠재 산성황산염토양의 산화과정에 대한 연구)

  • Han, Kang-Wan;Chun, Jae-Chul;Cho, Jae-Young;Kim, Geum-Hee;Ann, Yeoul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.243-248
    • /
    • 1996
  • To find out the oxidation process of potential acid sulfate soil(PASS) along with time. the PASS were treated with lime and ammonia water to adjust soil pH in laboratory column condition. pH range of PASS showed 6.5 to 7.5. however, complete oxidized PASS by $H_2O_2$ showed 2.1 to 2.5. After pilling the PASS under the natural condition. oxidation occured slowly from surface of the pilled soil. The oxidation of PASS proceeded slowly when the soil was in submerged condition. but quickly in dried condition. The content of sulfide-sulfur in PASS sharply decreased after exposing to the air and the decreasing rate was greater in dried than in submerged condition. The content of sulfate-sulfur continuously decreased in submerged condition. but increased in dried condition. Contents of $Fe^{+{+}}$ and $Al^{+{+}}$ in PASS were generally increased with time and the increasing rate was greater in submerged than in dried condition. Liming to PASS was slowly acting to pH change and ammonia water caused fast pH change within a short period of time. The contents of sulfate-sulfur and exchangeable aluminum in drainage water decreased with time and the contents of sulfide-sulfur and ferrous iron were increased.

  • PDF

A Study on the Distribution Characteristics of Buxus koreana in Kwanaksan Ecological and Scenery Conservation Area (관악산 생태경관보전지역 내 회양목 분포 특성 연구)

  • Lee, Ho-Young;Oh, Choong-Hyeon;Lee, Sang-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • The purpose of this study was to find out the vegetation community structure and the distribution characteristics of Buxus koreana through analysis of the topography and soil characteristics in Kwanaksan Ecological and Scenery Conservation Area. To do this twenty two plots as $100m^2$ each were set up and investigated. As a result, the vegetation communities were classified in four groups; Pinus rigida community (I), P. rigida - B. koreana community(II), Quercus mongolica community(III), Quercus acutissima - Quercus serrata community(IV). The distribution characteristics in topography appeared that B. koreana distributed more in valley where soil water and nutrition conditions are good. The drainage condition also influenced the distribution, because the ratio of clay was low in the result of soil texture analysis. B. koreana was distributed in high-pitched slope and the high rock ratio area. According to the soil analysis, the mean soil pH of B. koreana distributed groups(pH 4.79) was higher than that of non-B. koreana distributed groups(pH 4.41). It appeared that B. koreana had tolerance to the barren soil, so the value of exchangeable cations such as $Ca^{2+}$ and $Mg^{2+}$were showed lower than that of the average of Korean forest soil.

Adsorption Characteristics of Oxyanions on Ferrihydrite and Mineral Phase Transformation (페리하이드라이트의 산화음이온 흡착 특성과 광물상 변화)

  • Gyure Kim;Yeongkyoo Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.301-310
    • /
    • 2023
  • Ferrihydrite is an iron oxide mineral that is easily found in the natural environment, including acid mine drainage, and has a low crystallinity and high specific surface area, resulting in high reactivity with other ions, and can remove environmentally hazardous substances. However, because ferrihydrite is a metastable mineral, there is a possibility of releasing adsorbed ions by phase transformation to other minerals having low surface area and high crystallinity. In this study, the adsorption characteristics of arsenate, chromate, and selenate on ferrihydrite and the oxyanion removal efficiency of ferrihydrite were studied considering mineral phase transformation. At both pH 4 and 8, the adsorption of oxyanions used in the study were in good agreement with both Langmuir and Freundlich adsorption models except for selenate at pH 8. Due to the difference in surface charge according to pH, at pH 4 a higher amount of ions were adsorbed than at pH 8. The adsorption amount were in the order of arsenate, chromate, and selenate. These different adsorption models and adsorption amounts were due to different adsorption mechanisms for each oxyanions on the surface of ferrihydrite. These adsorption characteristics were closely related to changes in the mineral phase. At pH 4, a phase transformation to goethite or hematite was observed, but only a phase transformation to hematite was observed at pH 8. Among the oxyanion species on ferrihydrite, arsenate showed the highest adsorption capacity and hardly caused phase transformation during the experimental period after adsorption. Contrary to this, chromate and selenate showed faster mineral phase transformation than arsenate, and selenate had the lowest retardation effect among the three oxyanions. Ferrihydrite can effectively remove arsenate due to its high adsorption capacity and low phase transformation rate. However, the removal efficiency for other two oxyanions were low by the low adsorption amount and additional mineral phase transformation. For chromate, the efficient removal is expected only at low concentrations in low pH environments.

A Study on Foley Catheter Associated Bacteriuria (유치도뇨관 삽입으로 인한 요감염에 관한 연구)

  • 소희영
    • Journal of Korean Academy of Nursing
    • /
    • v.8 no.2
    • /
    • pp.79-88
    • /
    • 1978
  • Utilizing Foley catheter in therapy of inpatient cause bacteriuria and urinary tract infection that leads to first ranked factor's in hospital infection (nosocomial infection). To protect the patient from such infections, emphasis should be placed on catheterization technique and management of the closed drainage system, this reducing the chances of introducing organisms. This study has been done at Intensive Care Unit of A and B hospitals from May-Oct. 1978 on 20 male and 18 female adult patients. Each patient was screened and found to have nonbacteriuria in clean catch specimen before catheterization. Clean catch specimen via foley catheter were obtained after 48 hours and 96 hours from catheterization. The findings are as follows: A. The occurrence of bacteriuria in patients according to duration of indwelling catheter. 1 213.9% of the patient showed evidence of bacteriuria 48h post catheterization specimen, while 57.9% of the patient showed evidence of bacteriuria 96h post catheterization specimen. 2 25% of male patients had infection 48h post catheterization and 45% displayed bacteriuria post catheterization. 33% of female patients displayed infection 48h post catheterization and 72.2% having infection 96h post catheterization. Statistically there were significant differences between female patients and the duration of insertion. (P < 0.025) B. The occurrence of bacteriuria with the administration of bacteriuria with the ad-ministration of antibiotic in 24 patients was in 41,7%. The occurrence of bacteriuria without the administration of antibiotic in 14 patients was in 92.3%. Statistically there were very significant difference between the administration of the antibiotis and bacteriuria. (P < 0.005) C. Studies were done according to the consciousness level of the patients, 71.4% of those patient who displayed mental disorder developed bacteriuria, while 30.0% of those patient who displayed non mental disorder developed bacteriuria.

  • PDF

Mineralogy and Geochemistry of Fault Gouge in Pyrite-rich Andesite (함황철석 안산암 내 단층 비지의 광물학적 및 지구화학적 연구)

  • Park, Seunghwan;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • To investigate the role of fault gauge in the behavior of heavy metals caused by the acid rock drainage in the area of pyrite-rich andesite, XRD, pH measurement, XRF, SEM-EDS, ICP, and sequential extraction method were used. Bed rock consists of quartz, pyrophyllite, pyrite, illite, and topaz, but the brown-colored fault gouge is composed of quartz, illite, chlorite, smectite, goethite, and cacoxenite. The mineral composition of bed rock suggests that it is heavily altered by hydrothermal activity. The concentrations of heavy metals in the bed rock are as follows, Zn > As > Cu > Pb > Cr > Ni > Cd, and those in fault gouge are As > Zn > Pb > Cr > Cu > Ni > Cd. The concentrations of the heavy metals in the fault gouge are generally higher than those in the bed rock, especially for Pb, As, and Cr, which were more than twice as those in the bed rock. It is believed that the difference in the amount of heavy metals between the bed rock and the fault gouge is mainly due to the existence of goethite which is the main mineral composition in the fault gouge and can play important role in sequestering these metals by coprecipitation and adsorption. The low pH, caused by oxidation of pyrite, also plays significant role in fixation of those metals. It is confirmed that the fractions of labile (step 1) and acid-soluble (step 2), which can be easily released into the environment, were higher in the bed rock. Those fractions were relatively low in fault gauge, suggesting that fault gauge can play important role as a sink of heavy metals to prevent those ones from being released in the area where the acid rock drainage can have an influence.

Mineralogy and the Behavior of Heavy Metals at Different Depths in Tailing Impoundment of the Samsanjeil mine (삼산제일광산 광미 매립지의 매립 심도에 따른 광물 변화 및 중금속의 거동)

  • Kim, Heong-Jung;Kim, Yeong-Kyoo;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.229-240
    • /
    • 2009
  • In Gosung, the symptoms similar to itai-itai disease from neighboring residents of the Samsanjeil mine have been social issues. Therefore, various researches on the behavior of heavy metals of the tailings impoundment of 280,000 ton in the Samsanjeil mine are required. In this paper, mineralogical and geochemical studies on the tailings at different depths in the Samsanjeil mine were investigated and the factors on the behavior of heavy metals were also studied. At two sampling sites (NN and SN), samples were collected at different depths down to 1 m. At NN sites, pH values decreased with depth, while those at SN sites did not show significant changes. XRD analysis showed that the main minerals in the tailings were quartz, microcline, muscovite, and chlorite with minor amount of gypsum. There were no noticeable changes in the mineral composition with depth. At NN sites, the amount of calcite was negligible, and jarosite, which usually occurs at acid soil or acid mine drainage at pH lower than 4, was identified. However, the samples at SN site contained relatively high contents of calcite with pyrite. Therefore, calcite seemed to buffer the acid and control pH at SN site. The contents of heavy metals in tailings were in the order of Cu > As > Zn > Pb > Co > Cr > Ni > Cd. The heavy metal concentrations in the tailings were closely related with pH changes. The concentrations of Cd and Co were much lower at NN site at which pH values are low than those at SN sites. Contrary to that, Cr and As which exist as oxyanions showed higher concentrations at SN sites. This result showed that the behaviors of heavy metals in our study area were controlled by pH which is influenced by the contents of calcite.

Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment (나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성)

  • Lee, Woo Chun;Kim, Soon-Oh;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-108
    • /
    • 2015
  • Nano-sized iron colloids are formed as acid mine drainage is exposed to surface environments and is introduced into surrounding water bodies. These iron nanomaterials invoke aesthetic contamination as well as adverse effects on aqueous ecosystems. In order to control them, the characteristics of their behaviour should be understood first, but the cumulative research outputs up to now are much less than the expected. Using zero-valent iron (ZVI) and magnetite, this study aims to investigate the behaviour of iron nanomaterials according to the change in the composition and pH of background electrolyte and the concentration of natural organic matter (NOM). The size and surface zeta potential of iron nanomaterials were measured using dynamic light scattering. Characteristic behaviour, such as aggregation and dispersion was compared each other based on the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory. Whereas iron nanomaterials showed a strong tendency of aggregation at the pH near point of zero charge (PZC) due to electrostatic attraction between particles, their dispersions became dominant at the pH which was higher or lower than PZC. In addition, the behaviour of iron nanomaterials was likely to be more significantly influenced by cations than anions in the electrolyte solutions. Particularly, it was observed that divalent cation influenced more effectively than monovalent cation in electrostatic attraction and repulsion between particles. It was also confirmed that the NOM enhanced the dispersion nanomaterials with increasing the negative charge of nanomaterials by coating on their surface. Under identical conditions, ZVI aggregated more easily than magnetite, and which would be attributed to the lower stability and larger reactivity of ZVI.

Comparative Study on Laboratory Experimental Results for Removal Efficiencies of Heavy Metals in AMD & ARD using Natural Materials (천연물질을 이용한 AMD및 ARD내의 중금속 저감효율 실내실험 결과 비교연구)

  • 최정찬;이민희
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.133-142
    • /
    • 2004
  • The purpose of this study is to evaluate a laboratory test on arsenic removal effciency for ARD(Acid Rock Drain-age) using limestone and apatite, and on heavy metals removal efficiencies for AMD(Acid Mine Drainage) using apatite and fish bone. As a result of the laboratory test, pH, arsenic removal rate of limestone & apatite are inversely proportional to flow rates and apatite removes 100% of arsenic while limestone removes 37% of arsenic at 0.6$m{ell}$/min/kg flow rate in case of ARD treatment. And the dissolution amount of apatite is twenty five times higher than that of limestone. In case of AMD treatment, fish bone shows higher dissolution rate than apatite, and pH of outlet water reacted with fish bone is higher than that reacted with apatite. The heavy metal removal rates of fish bone are also higher than that of apatite except arsenic removal rate. The precipitate resulted from fish bone reaction with AMD seems to be biological sludge type while that resulted from apatite with AMD is inorganic solid which can settle easily compared with the biological sludge and can be cemented by gypsum. As the results, apatite can be used as a precipitant for the polluted mine waters showing wide range of pH and fish bone can be used for highly contaminated AMD.

Nutrient Absorption Pattern by Analysis of Drainage through Growth Stages in Cucumber Coir Bag Culture (오이 코이어 자루재배시 배액분석을 통한 생육단계별 적정 양분흡수패턴 구명)

  • Kim, Sung Eun;Lee, Jae Eun;Sim, Sang Youn;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.229-234
    • /
    • 2014
  • We analyzed drainage water from coir substrate in which cucumber plants were grown in winter and elucidated changes in pH, EC, and major nutrients according to the growth stages to recommend nutrient solution management appropriate to each growth stage. From the analysis of drainage solution the growth stages of cucumber were desirable to be divided into two, planting to fruit setting and fruit setting to harvest in case of nutrient solution management. The time required was about 3 weeks from planting to the first fruit setting and thereafter 7~10 days more until the first harvest. Approximately every 3~4 days were needed until the upper flowers bloomed. The time required from fruit setting to harvest was not different much among flowers as cucumber plants grew. From the experimental results, EC of supplied solution was recommended to maintain a little high to $3.0dS{\cdot}m^{-1}$ until before fruit setting and lower a little to $2.0{\sim}2.3dS{\cdot}m^{-1}$ after that. Of course, the amount of solution supply should be increased as plants grew. In case of each nutrients, the recommendation of concentrations of nitrogen, phosphorus and calcium were 700, 60, and $110mg{\cdot}L^{-1}$ each until before fruit setting, and then 660, 50, and $100mg{\cdot}L^{-1}$ each after fruit setting. The concentrations of potassium and magnesium are recommended to start from 400 and $80mg{\cdot}L^{-1}$ until fruit setting and lower a little after that.

Effect of Organic Substrates Mixture Ratio on 2-year-old Highbush Blueberry Growth and Soil Chemical Properties (유기자재 종류별 혼합비율이 2년생 하이부시 블루베리의 유목 생육과 토양환경에 미치는 영향)

  • Kim, Hong-Lim;Kim, Hyoung-Deug;Kim, Jin-Gook;Kwack, Yong-Bum;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.858-863
    • /
    • 2010
  • The blueberry farming requires the soil condition of well-drainage, pH of 4.5 to 5.2, and high in organic matters for stable growth and development. Most of soil type of cultivated land in Korea, however, belongs to alkaline soils with low organic matter content and poor drainage. Therefore, the blueberry farmers use peat moss heavily to improve the soil condition, but the guideline on the effective and economic ratio of peat moss is not established yet. This study was performed to determine the cost effective peat moss ratio for amending soils, and to investigate the feasibility of using sawdust and coco peat as soil amendments. Peat moss, coco peat and sawdust are mixed with soil at the ratio of 0, 12.5, 50 and 100% (v/v). Among 3 organic materials with various mixture ratios, the pH of soil was the lowest in 100% peat moss and sawdust mixtures (pH 3.67 and pH 3.73, respectively), followed by pH 5.30 at 50% peat moss. The soil organic matter content are directly proportional to the mixture ratios in all three organic materials and the same trend was observed in the variation of content of exchangeable potassium in the coco peat treatments. On the contrary, the content of available phosphate, exchangeable calcium and magnesium decreased with increasing the ratio of organic materials. The nitrogen content in the leaves decreased as increasing the ratio of peat moss and coco peat in soil, but not of sawdust. The content of phosphate decreased but potassium increased as the ratio of sawdust and coco peat increased. There was no clear difference in the contents of magnesium and calcium among 3 organic materials. The plant height, stem diameter and dry weight of blueberry plants were the highest in 50 % peat moss, followed by 12.5% peat moss and 12.5% coco peat. The plants in 100% peat moss showed very poor growth. It can be concluded that peatmoss, when applied and managed appropriately, will be a good material for improving soil condition as well as securing desirable growth for blueberry. Upon coupling economic aspect, the optimum mixing ratio of peatmoss for blueberry farming is approximately 25-50%.