DOI QR코드

DOI QR Code

Adsorption Characteristics of Oxyanions on Ferrihydrite and Mineral Phase Transformation

페리하이드라이트의 산화음이온 흡착 특성과 광물상 변화

  • Gyure Kim (School of Earth System Sciences, Kyungpook National University) ;
  • Yeongkyoo Kim (School of Earth System Sciences, Kyungpook National University)
  • 김규례 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Received : 2023.04.07
  • Accepted : 2023.06.12
  • Published : 2023.06.28

Abstract

Ferrihydrite is an iron oxide mineral that is easily found in the natural environment, including acid mine drainage, and has a low crystallinity and high specific surface area, resulting in high reactivity with other ions, and can remove environmentally hazardous substances. However, because ferrihydrite is a metastable mineral, there is a possibility of releasing adsorbed ions by phase transformation to other minerals having low surface area and high crystallinity. In this study, the adsorption characteristics of arsenate, chromate, and selenate on ferrihydrite and the oxyanion removal efficiency of ferrihydrite were studied considering mineral phase transformation. At both pH 4 and 8, the adsorption of oxyanions used in the study were in good agreement with both Langmuir and Freundlich adsorption models except for selenate at pH 8. Due to the difference in surface charge according to pH, at pH 4 a higher amount of ions were adsorbed than at pH 8. The adsorption amount were in the order of arsenate, chromate, and selenate. These different adsorption models and adsorption amounts were due to different adsorption mechanisms for each oxyanions on the surface of ferrihydrite. These adsorption characteristics were closely related to changes in the mineral phase. At pH 4, a phase transformation to goethite or hematite was observed, but only a phase transformation to hematite was observed at pH 8. Among the oxyanion species on ferrihydrite, arsenate showed the highest adsorption capacity and hardly caused phase transformation during the experimental period after adsorption. Contrary to this, chromate and selenate showed faster mineral phase transformation than arsenate, and selenate had the lowest retardation effect among the three oxyanions. Ferrihydrite can effectively remove arsenate due to its high adsorption capacity and low phase transformation rate. However, the removal efficiency for other two oxyanions were low by the low adsorption amount and additional mineral phase transformation. For chromate, the efficient removal is expected only at low concentrations in low pH environments.

페리하이드라이트는 산상광산배수를 포함한 자연 환경에서 쉽게 관찰되는 산화철 광물로 결정도가 낮고 높은 비표면적을 갖고 있어 다른 이온과의 반응성이 매우 우수하여 환경유해물질과의 반응을 통하여 이의 제거가 가능하다. 그러나 페리하이드라이트는 준안정성 광물이기 때문에 표면적이 작고 결정도가 높은 다른 광물로의 상변화로 흡착된 이온들의 방출 가능성도 존재한다. 본 연구에서는 비산염, 크롬산염, 셀레늄산염의 페리하이드라이트에 대한 흡착 특성과 광물상 변화까지 고려한 페리하이드라이트의 산화음이온 제거 효능을 연구하였다. 실험 시 pH 4와 8에서 연구에 사용된 산화음이온들의 흡착은 pH 8에서 셀레늄산염을 제외하고 Langmuir와 Freundlich 두 흡착 모델과 잘 일치하였다. 각 산화음이온의 흡착량은 pH에 따른 표면 전하의 차이로 인하여 pH 4의 경우 pH 8보다 더 높았다. 흡착 량은 비산염, 크롬산염, 그리고 세레늄산염의 순서를 보여주었다. 이러한 흡착모델과 흡착량은 각 산화음이온의 흡착 시 페리하이드라이트 표면에서 일어나는 서로 다른 흡착 기작을 잘 대변한다. 이러한 흡착 특성은 광물상의 변화와도 밀접한 연관성이 있었다. pH 4에서는 침철석 혹은 적철석으로의 상변화를 보여주었으나, pH 8에서는 적철석으로의 상변화만이 관찰되었다. 산화음이온 종 중 비산염은 가장 높은 흡착력을 보여주며, 흡착 후 페리하이드라이트의 실험 기간 내 거의 상변화를 일으키지 않았다. 이와 달리 크롬산염과 셀레늄산염은 비산염에 비하여 광물상 변화가 더 빨랐으며 세 산화음이온 중 셀레늄산염의 지연 효과가 가장 낮았다. 페리하이드라이트는 비산염에 대하여 높은 흡착 능력과 낮은 상변화로 인하여 효과적인 제거가 가능하지만 다른 두 산화음이온 종은 낮은 흡착량과 추가적인 광물상 변화로 비산염에 비하여 제거 효과가 떨어지고 크롬산염의 경우 낮은 pH 환경에서 낮은 농도의 경우에에만 효율적인 제거가 가능할 것으로 판단된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C1003884).

References

  1. Antelo, J., Arce, F. and Fiol, S. (2015) Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chem. Geol., v.410, p.53-62. doi: 10.1016/j.chemgeo.2015.06.011
  2. Boland, D.D., Collins, R.N., Glover, C.J. and Waite, T.D. (2013) An in situ quick-EXAFS and redox potential study of the Fe(II)-catalysed transformation of ferrihydrite. Colloids Surf. A: Physicochem. Eng. Asp., v.435, p.2-8. doi: 10.1016/j.colsurfa.2013.02.009
  3. Boland, D.D., Collins, R.N., Miller, C.J., Glover, C.J. and Waite, T.D. (2014) Effect of Solution and Solid-Phase Conditions on the Fe(II)-Accelerated Transformation of Ferrihydrite to Lepidocrocite and Goethite. Environ. Sci. Technol., v.48, p.5477-5485. doi: 10.1021/es4043275
  4. Bompoti, N., Chrysochoou, M. and Machesky, M. (2017) Surface structure of ferrihydrite: Insights from modeling surface charge. Chem. Geol., v.464, p.34-45. doi: 10.1016/j.chemgeo.2016.12.018
  5. Borsig, N., Scheinost, A.C., Shaw, S., Schild, D. and Neumann, T. (2017) Uptake mechanisms of selenium oxyanions during the ferrihydrite-hematite recrystallization. Geochim. Cosmochim. Acta. v.206, p.236-253. doi: 10.1016/j.gca.2017.03.004
  6. Cornell, R.M. (1988) The influence of some divalent cations on the transformation of ferrihydrite to more crystalline products. Clay Miner., v.23, p.329-332. doi: 10.1180/claymin.1988.023.3.10
  7. Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd ed., Wiley-VCH, Weinheim, Germany. doi: 10.1002/3527602097
  8. Cudennec, Y. and Lecerf, A. (2006) The transformation of ferrihydrite into goethite or hematite, revisited. J. Solid State Chem., v.179, p.716-722. doi: 10.1016/j.jssc.2005.11.030
  9. Das, S., Hendry, M.J. and Essilfie-Dughan, J. (2011a) Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environ. Sci. Technol., v.45, p.268-275. doi: 10.1021/es101903y
  10. Das, S., Hendry, M.J. and Essilfie-Dughan, J. (2011b) Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10. Environ. Sci. Technol., v.45, p.5557-5563. doi: 10.1021/es200107m
  11. Das, S., Hendry, M.J. and Essilfie-Dughan, J. (2013) Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Appl. Geochem., v.28, p.185-193. doi: 10.1016/j.apgeochem.2012.10.026
  12. Das, S., Essilfie-Dughan, J. and Hendry, M.J. (2014) Arsenate partitioning from ferrihydrite to hematite: Spectroscopic evidence. Am. Mineral, v.99, p.749-754. doi: 10.2138/am.2014.4657
  13. Fuller, C.C., Davis, J.A. and Waychunas, G.A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta, v.57, p.2271-2282. doi: 10.1016/0016-7037(93)90568-H
  14. Galvez, N., Barron, V. and Torrent, J. (1999) Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite. Clays Clay Miner., v.47, p.304-311. doi: 10.1346/CCMN.1999.0470306
  15. Guzman, G., Alcantara, E., Barron, V. and Torrent, J. (1994) Phytoavailability of phosphate adsorbed on ferrihydrite, hematite, and goethite. Plant Soil, v.159, p.219-225. doi: 10.1007/BF00009284
  16. Hiemstra, T. (2013) Surface and mineral structure of ferrihydrite. Geochim. Cosmochim. Acta, v.105, p.316-325. doi: 10.1016/j.gca.2012.12.002
  17. Jambor, J.L. and Dutrizac, J.E. (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem. Rev., v.98, p.2549-2585. doi: 10.1021/cr970105t
  18. Jia, Y., Xu, L., Wang, X. and Demopoulos, G.P. (2007) Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Acta, v.71, p.1643-1654. doi: 10.1016/j.gca.2006.12.021
  19. Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T. and Wang, Y. (2015) Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci., v.353, p.1087-1094. doi: 10.1016/j.apsusc.2015.06.190
  20. Johnston, C.P. and Chrysochoou, M. (2012) Investigation of chromate coordination on ferrihydrite by in situ ATR-FTIR spectroscopy and theoretical frequency calculations. Environ. Sci. Technol., v.46, p.5851-5858. doi: 10.1021/es300660r
  21. Johnston, C.P. and Chrysochoou, M. (2016) Mechanisms of chromate, selenate, and sulfate adsorption on al-substituted ferrihydrite: implications for ferrihydrite surface structure and reactivity. Environ. Sci. Technol., v.50, v.3589-3596. doi: 10.1021/acs.est.5b05529
  22. Liu, C., Zhu, Z., Li, F., Liu, T., Liao, C., Lee, J.-J., Shih, K., Tao, L. and Wu, Y. (2016) Fe(II)-induced phase transformation of ferrihydrite: The inhibition effects and stabilization of divalent metal cations. Chem. Geol., v.444, v.110-119. doi: 10.1016/j.chemgeo.2016.10.002
  23. Mamun, A.Al., Morita, M., Matsuoka, M. and Tokoro, C. (2017) Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution. J. Hazard. Mater., v.334, p.142-149. doi: 10.1016/j.jhazmat.2017.03.058
  24. Manceau, A. and Charlet, L. (1994) The mechanism of selenate adsorption on goethite and hydrous ferric oxide. J. Colloid Interface Sci., v.168, p.87-93. doi: 10.1006/jcis.1994.1396
  25. Martinez, C.E., Sauve, S., Jacobson, A. and McBride, M.B. (1999) Thermally induced release of adsorbed Pb upon aging ferrihydrite and soil oxides. Environ. Sci. Technol., v.33, p.2016-2020. doi: 10.1021/es980888f
  26. Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L. and Parise, J.B. (2007) The structure of ferrihydrite, a nanocrystalline material. Science, v.316, p.1726-1729. doi: 10.1126/science.1142525
  27. Ni, C., Liu, S., Cui, L., Han, Z., Wang, L., Chen, R. and Liu, H. (2016) Adsorption performance of Cr (VI) onto Al-free and Al-substituted ferrihydrites. RSC Adv., v.6, p.66412-66419. doi: 10.1039/C6RA09465A
  28. Paige, C.R., Snodgrass, W.J., Nicholson, R.V. and Scharer, J.M. (1996) The crystallization of arsenate-contaminated iron hydroxide solids at high pH. Water Environ. Res., v.68, p981-987. https://doi.org/10.2175/106143096X128009
  29. Peak, D. and Sparks, D.L. (2002) Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ. Sci. Technol., v.36, p.1460-1466. doi: 10.1021/es0156643
  30. Pedersen, H.D., Postma, D. and Jakobsen, R. (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta, v.70, p.4116-4129. doi: 10.1016/j.gca.2006.06.1370
  31. Rout, K., Mohapatra, M. and Anand, S. (2012) 2-Line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. Dalton Trans., v.41, v.3302-3312. doi: 10.1039/C2DT11651K
  32. Schultz, M.F., Benjamin, M.M. and Ferguson, J.F. (1987) Adsorption and desorption of metals on ferrihydrite: Reversibility of the reaction and sorption properties of the regenerated solid. Environ. Sci. Technol., v.21, p.863-869. doi: 10.1021/es00163a003
  33. Schwertmann, U., Friedl, J. and Stanjek, H. (1999) From Fe (III) ions to ferrihydrite and then to hematite. J. Colloid Interface Sci., v.209, p.215-223. doi: 10.1006/jcis.1998.5899
  34. Schwertmann, U. and Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., v.31, p.277-284. doi: 10.1346/CCMN.1983.0310405
  35. Schwertmann, U., Stanjek, H. and Becher H.H. (2004) Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25℃. Clay Miner., v.39, p.433-438. doi: 10.1180/0009855043940145
  36. Shin, J.-H., Park, J.-Y. and Kim, Y. (2021) Mineralogical and geochemical characteristics of the precipitates in acid mine drainage of the Heungjin-Taemaek coal mine. Econ. Environ. Geol., v.54, p.299-308. doi: 10.9719/EEG.2021.54.2.299
  37. Soltis, J.A., Feinberg, J.M., Gilbert, B. and Penn, R.M. (2016) Phase transformation and particle-mediated growth in the formation of hematite from 2-line ferrihydrite. Cryst. Growth Des., v.16, p.922-932. doi: 10.1021/acs.cgd.5b01471
  38. Stefansson, A. (2007) Iron(III) hydrolysis and solubility at 25℃. Environ. Sci. Technol., v.41, p.6117-6123. doi: 10.1021/es070174h
  39. Swedlund, P.J. and Webster, J.G. (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl. Geochem., v.16, p.503-511. doi: 10.1016/S0883-2927(00)00044-5
  40. Vu, H.P. and Moreau, J.W. (2015) Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite. Chemosphere, v.119, p.987-993. doi: 10.1016/j.chemosphere.2014.09.019
  41. Wang, Z., Xiao, D., Bush, R.T. and Liu, J. (2015) Coprecipitated arsenate inhibits thermal transformation of 2-line ferrihydrite: Implications for long-term stability of ferrihydrite. Chemosphere, v.122, p.88-93. doi: 10.1016/j.chemosphere.2014.11.017
  42. Waychunas, G.A., Rea, B.A., Fuller, C.C. and Davis, J.A. (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta, v.57, p.2251-2269. doi: 10.1016/0016-7037(93)90567-G
  43. Waychunas, G.A., Fuller, C.C., Rea, B.A. and Davis, J.A. (1996) Wide angle X-ray scattering (WAXS) study of "two-line" ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochim. Cosmochim. Acta, v.60, p.1765-1781. doi: 10.1016/0016-7037(96)89830-9
  44. Zachara, J.M., Girvin, D.C., Schmidt, R.L. and Resch, C.T. (1987) Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Technol., v.21, p.589-594. doi: 10.1021/es00160a010
  45. Zhao, J., Huggins F.E., Feng Z. and Huffman G.P. (1994) Ferrihydrite: Surface structure and its effects on phase transformation. Clays Clay Miner., v.42, p.737-746. doi: 10.1346/CCMN.1994.0420610
  46. Zhu, J., Pigna, M., Cozzolino, V., Caporale, A.G. and Violante, A. (2011) Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands. J. Hazard. Mater., v.189, p.564-571. doi: 10.1016/j.jhazmat.2011.02.071