• Title/Summary/Keyword: pH influence

Search Result 1,807, Processing Time 0.028 seconds

Synthesis of a New α-Dioxime Derivative and Its Application for Selective Homogeneous Liquid-Liquid Extraction of Cu(II) into a Microdroplet Followed by Direct GFAAS Determination

  • Ghiasvand, A. R.;Shadabi, S.;Kakanejadifard, A.;Khajehkoolaki, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.781-785
    • /
    • 2005
  • A fast and reliable method for the selective separation and preconcentration of $Cu^{2+}$ ions using homogeneous liquid-liquid extraction was developed. A new $\alpha$-dioxime derivative (2H-1,4-benzothioazine-2,3(4H)dionedioxime, Dioxime I) was synthesized and investigated as a suitable selective complexing ligand for $Cu^{2+}$ ions. Zonyl FSA (FSA) was applied as a phase-separator agent under the slightly acidic pH conditions. Under the optimal experimental conditions ([FSA] = 3.2% w/v, [THF] = 19.5% v/v, [Dioxime I] = 1.9 ${\times}\;10^{-3}$ M, and pH = 4.7), 10 ${\mu}g\;of\;Cu^{2+}$ in 5.2 mL aqueous phase could be extracted quantitatively into 80 $\mu$L of the sedimented phase. The maximum concentration factor was 65-fold. The limit of detection of the proposed method was 0.005 ng $mL^{-1}$. The reproducibility of the proposed method, on the 10 replicate measurements, was 1.3%. The influence of the pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the complexing ligand and the effect of different diverse ions on the extraction and determination of $Cu^{2+}$ ions were investigated. The proposed method was applied to the extraction and determination of $Cu^{2+}$ ion in different synthetic and natural water samples.

Changes of Mineralogical Characteristics of Precipitates in Acid Mine Drainage of the Dalsung Mine and Related Changes of Trace Elements (달성광산 산성광산배수 침전물의 시간에 따른 광물상 특성 변화 및 이에 따른 미량원소의 거동 변화)

  • Yoon, Young Jin;Kim, Yeongkyoo;Lee, Seong-joo
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.531-540
    • /
    • 2022
  • Various iron minerals that precipitate in acid mine drainage have a great influence on the concentration change and mobility of trace elements in the drainage during phase transition to other minerals as well as the precipitation process. This study investigated the change of mineral properties and the behaviors of trace elements influenced by pH and time for the precipitates collected from the acid mine drainage treatment system of the Dalsung mine, where schwertmannite is mainly precipitated. However, the main mineral precipitated in the drainage was goethite, suggesting schwetmannite has already undergone a phase transition to goethite to some extent, and it was observed that at higher pH, the peak width at half maximum of XRD peak was narrower. This can be interpreted as the transformation of small amount of amorphous schwetmannite to goethite or an increase in the crystallinity of goethite, and it showed that the higher the pH, the greater this change was. The concentration of Fe was also greatly affected by the pH values, and as the pH increased, the concentration of Fe in the drainage decreased. With increasing time, the Fe concentration increased and then decreased, which can be interpreted to indicate the dissolution of schwertmannite and precipitation of goethite. This mineral change probably resulted in the rapid increase of the concentration of S at initial stage, but its concentration was stabilized later. The concentration of S is also related to the stability of schwetmannite, showing a high concentration at a low pH at which schwertmannite is stable and a low concentration at a high pH at which goethite is stable. The trace elements present as cations in the drainage also showed a close relationship with the pH, generally the lower the pH, the higher the concentration, due to the solubility changes by the pH, and the precipitation and the changes in mineral surface charge at high pH. On the other hand, in the case of As, existing as an anion, although it showed a high concentration at low pH, its concentration increased with time at all pH values, which is probably related to the concentration of Fe which can be coprecipitated in the drainage, and the increase of As concentration with time is also considered to be related to the decrease in schwertmannite rather than the mineral surface charge.

STUDIES ON POTASSIUM-LYSINE INTERRELATIONSHIPS IN BROILER CHICKS 2. EFFECT OF POTASSIUM-LYSINE INTERRELATIONSHIPS ON BLOOD PARAMETER, SERUM AND BONE COMPOSITION

  • Shin, H.Y.;Han, I.K.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.145-150
    • /
    • 1992
  • To determine the effect of dietary potassium and lysine levels on blood parameters, serum and bone composition, 360 male broiler chicks of 3 days of age were used in a completely randomized $3{\times}3$ factorial experiment for 6 weeks. Experimental diets contained three supplemented levels of dietary potassium (0.3, 0.6 and 1.2%) and three supplemented levels of dietary lysine (0.6, 1.2 and 2.4%). Dietary levels of potassium and lysine did not influence blood pH, $pCO_2$, $pO_2$, $HCO_3$ and total $CO_2$ and interaction between potassium and lysine was not shown (p > 0.05). Serum lysine and arginine contents were significantly different by the levels of dietary lysine (p < 0.05). Lysine-arginine antagonism was observed in high lysine diet. But increasing dietary potassium did not alleviated the lysine-arginine antagonism. Serum sodium, potassium and chloride were not affected by dietary potassium and lysine levels (p > 0.05). Femur weight, length and P contents were affected by the levels of dietary lysine (p < 0.01). But no difference was observed in femur ash and Ca contents (p > 0.05). Interaction between potassium and lysine was shown in ash and P contents (p < 0.01).

Distributional Pattern of Tree Species in Response to Soil Variables in a Semi Natural Tropical Forest of Bangladesh

  • Ara, Saida Hossain;Limon, Mahedi Hasan;Kibria, Mohammad Golam
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.14-24
    • /
    • 2021
  • A plant community is a group of populations that coexist in space and interact directly or indirectly with the environment. In this paper, we determined the pattern of tree species composition in response to soil variables in Khadimnagar National Park (KNP), which is one of the least studied tropical forests in Bangladesh. Soil and vegetation data were collected from 71 sample plots. Canonical Correspondence Analysis (CCA) with associated Monte Carlo permutation tests (499 permutations) was carried out to determine the most significant soil variable and to explore the relationship between tree species distribution and soil variables. Soil pH and clay content (pH with p<0.01 and Clay content with p<0.05) were the most significant variables that influence the overall tree species distribution in KNP. Soil pH is related to the distribution and abundance of Syzygium grande and Magnolia champaca, which were mostly found and dominant species in KNP. Some species were correlated with clay content such as Artocarpus chaplasha and Cassia siamea. These observations suggest that both the physico-chemical properties of soil play a major role in shaping the tree distribution in KNP. Hence, these soil properties should take into account for any tree conservation strategy in this forest.

A study on relationship of concentration of phosphorus, turbidity and pH with temperature in water and soil (물과 토양에서 pH, PO4-P, 탁도 그리고 T-P 농도에 미치는 온도의 영향에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Chung, Nam-Hyun;Kang, Sam-Woo;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.378-386
    • /
    • 2011
  • The goal of this study is to understand the influence of temperature on phosphorus release rate from soil into water. As the temperature increases, $PO_4$-P reaches equilibrium more quickly and the equilibrium concentration increases, and thus the $PO_4$-P concentration increases, and pH decreases. The $PO_4$-P concentration affects pH. $PO_4$-P released from turbidity is not adsorbed onto the turbidity. $PO_4$-P was independent on the turbidity and yet $PO_4$-P was steadily increasing. However, $PO_4$-P was dependent upon the turbidity concentration as the turbidity releases $PO_4$-P. The total phosphorous (T-P) and turbidity were directly linked because T-P changed with the turbidity. T-P includes the $PO_4$-P content of water and the phosphorus content of the turbidity. As the temperature decreases, density of water increases, and the precipitation of turbidity decreases, resulting in an increases in T-P concentration. As the temperature increases, the T-P concentration decreases, but the PO4-P release rate from turbidity increases. At the same time, even at different temperatures, the T-P concentrations of the samples were about the same. When the lake gets deepened, the water temperature decreases, hence, the phosphorus release rate from soil into water was decreased. This mechanism is of great interest because phosphorus is released from soil sediment into the lake water.

Influence of Transgenic Corn on the In vitro Rumen Microbial Fermentation

  • Sung, Ha Guyn;Min, Dong Myung;Kim, Dong Kyun;Li, De Yun;Kim, Hyun Jin;Upadhaya, Santi Devi;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1761-1768
    • /
    • 2006
  • In this study, the comparative effects of transgenic corn (Mon 810 and Event 176) and isogenic corn (DK729) were investigated for their influence on in vitro rumen fermentation. This study consisted of three treatments with 0.25 g rice straw, 0.25 g of corn (Mon810/Event176/DK 729) mixed with 30 ml rumen fluid-basal medium in a serum bottle. They were prepared in oxygen free conditions and incubated at $39^{\circ}C$ in a shaking incubator. The influence of transgenic corn on the number of bacterial population, F. succinogenes (cellulolytic) and S. bovis (amylolytic), was quantified using RT-PCR. Fermentative parameters were measured at 0, 2, 4, 8, 12 and 24 h and substrate digestibility was measured at 12 and 24 h. No significant differences were observed in digestibility of dry matter, NDF, ADF at 12 and 24 h for both transgenic and isogenic form of corns (p>0.05) as well as in fermentative parameters. Fluid pH remained unaffected by hybrid trait and decreased with VFA accumulation as incubation time progressed. No influence of corn trait itself was seen on concentration of total VFA, acetic, propionic, butyric and valeric acids. There were no significant differences (p<0.05) in total gas production, composition of gas (methane and hydrogen) at all times of sampling, as well as in NH3-N production. Bacterial quantification using RT-PCR showed that the population number was not affected by transgenic corn. From this study it is concluded that transgenic corn (Mon810 and Event 176) had no adverse effects on rumen fermentation and digestibility compared to isogenic corn. However, regular monitoring of these transgenic feeds is needed by present day researchers to enable consumers with the option to select their preferred food source for animal or human consumption.

Evaluation of Aluminum and Copper Biosorption in Two-Metal System using Algal Biosorbent

  • Lee, Hak-Sung;Volesky, Bohumil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassun fluitans pretreated with NaOH is capable of taking up more than $10\%$ $(q_{max}$ : 3.85 mmol/g for Al and 1.48 mmol/g for Cu) of its dry weight in the Al and Cu at pH of 4.5. However, the maximum Al and Cu uptakes calculated from Langmuir isotherm were 1.58 mmol/g for Al and 1.35 mmol/g for Cu at pH 3.5. Equilibrium batch sorption study was performed using two-metal system containing Al and Cu. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal biosorption inhibition due to the influence of a second metal. NaOH-treated S. fluitans contained 2.19 mmol $(43\;wt.\%)$ carboxyl groups per gram of biomass. A modified form of Langmuir, which assumes binding of Cu as $Cu^{2+}$ and Al as $Al(OH)_2^+,$ was used to model the experimental data. This result agrees with the one of mono-valent sorption for Al in single-metal system. The modified Langmuir model gives the following affinity correlated coefficients: 0.196 for Cu and 6.820 for Ah at pH 4.5, and 2.904 for Cu and 3.131 for Al at pH 3.5. The interference of Al in Cu biosorptive uptake was assessed by `cutting' the three dimensional uptake isotherm surfaces at constant second-metal final concentrations. Equimolar final equilibrium concentrations of Cu and Al of 1 mM at pH 4.5 give Cu and hi uptakes reduced by $82.5\%\;and\;5.4\%,$ respectively. However, these values at pH 3.5 were $55\%\;(Cu)\;and\;31\%$ (Al).

  • PDF

Development of Natural Dispersant for Korean Traditional Papermaking( I ) - Viscosity and Papermaking Characteristics of Hydrangea paniculata Mucilage- (한지 제조용 새로운 천연 점질물의 개발 (제1보) -나무수국 점질물의 점도 및 한지 제조 특성 -)

  • 최태호
    • Journal of Korea Foresty Energy
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • The application of the dispersant is indispensable to the manufacture of Korean traditional paper (Hanji). However the mucilage of which extracted from Abelmoschus manihot root has viscosity drop problem in summertime and synthetic dispersant such as polyacrylamide (PAM) and polyethyleneoxide (PEO) have some problems that under the influence of the quality of. water, cohesion, and bad solubility. This study was carried out not only to develop new natural dispersant that can solve such problems but also to investigate the viscosity and papermaking characteristics of Hydrangea paniculata mucilage. There were no viscosity changes between control and treated mucilage that adjusted to pH 9, heated 6 hours at 40 $^{\circ}C$, and stored heating treatment one for a week at 5 $^{\circ}C$. The treatment of mucilage that adjusted to pH 9 and aged for 120 hours at 4$0^{\circ}C$ resulted in viscosity drop. In the hydrolysis of mucilage, galacturonic acid and glucuronic acid contents were decreased by heating and pH adjusting treatments. Wet web stripping quality and physical properties of Korean traditional paper, which used Hydrangea paniculatamucilage were same or superior to the Abelmoschus manihot root.

  • PDF

Influence of Ph and Temperature on Polyphenol Oxidase in the Leaves of Perilla frutescens var. japonica (들깨잎 폴리페놀 산화효소의 pH 및 온도에 의한 영향)

  • Kim, Yoo-Kyung;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.384-390
    • /
    • 2004
  • Polyphenol oxidase-catalyzed oxidation of substrates (t-butylcatechol, 4-methylcatechol, chlorogenic acid, caffeic acid and pyrocatechol) were performed in the Ph range 4~8. Co ncentrations of substrate's major oxidation products were monitored by high performance liquid chromatograph. The nature and amounts of products formed were highly pH dependent. They also were ifluenced by kinds of substrates. Major oxidation product of 4-methylcatechol appeared the maxium value at pH 5, them of chlorogenic acid, caffeic acid and pyrocatechol at pH 6.0 and that of t-butylcatechol at pH 5~7. Time-dependent PPO activity was determined at $4^{\circ}C\;and\;30^{\circ}C$. PPO extracted by phosphate buffer containing triton X-114 (t-PPO) was more stable than PPO by phosphate buffer (b-PPO). The result of electrophoresis, at first PPO was showed only a band at 48 kd. After 1~3 days a partial degrade band was appeared in b-PPO and three partial degrade bands in t-PPO. No activity band was appeared in PPOs at $30^{\circ}C$ and b-PPO at $4^{\circ}C$ after 4 days. And a band (37 kDa) in t-PPO was remained finally and disappered. PPO from Perillae leaves has two activity bands at 48 and 37 kDa in previous paper. It was supposed that PPO in the leaves of Perilla frutescens was a protein having one molecular weight as 48 kDa. And 37 kDa protein, relatively proteolysis-resistant, was a proteolyzed form of a major form.

Ruminal Characteristics, Blood pH, Blood Urea Nitrogen and Nitrogen Balance in Nili-ravi Buffalo (Bubalus bubalis) Bulls Fed Diets Containing Various Levels of Ruminally Degradable Protein

  • Javaid, A.;Nisa, Mahr-un;Sarwar, M.;Aasif Shahzad, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Four ruminally cannulated Nili-ravi buffalo bulls were used in a $4{\times}4$ Latin Square design to determine the influence of varying levels of ruminally degradable protein (RDP) on ruminal characteristics, digestibility, blood pH, blood urea nitrogen (BUN) and nitrogen (N) balance. Four isonitrogenous and isocaloric diets were formulated (NRC, 2001). The control diet contained 50% RDP. The medium (MRDP), high (HRDP) and very high (VHRDP) ruminally degradable protein diets had 66, 82 and 100% RDP, respectively. Increasing the level of dietary RDP resulted in a linear decrease in ruminal pH. A quadratic effect of RDP on ruminal pH was also observed with quadratic maxima at the 66% RDP diet. Dietary RDP had a quadratic effect on total bacterial and protozoal count with maximum microbial count at the 82% RDP diet. Increased microbial count was due to increasing level of ruminal ammonia nitrogen ($NH_3-N$). Increasing dietary RDP resulted in a linear increase in dry matter digestibility. Provision of an adequate amount of RDP caused optimum microbial activity, which resulted in improvement in DM digestibility. Increasing the level of dietary RDP resulted in a linear decrease in crude protein (CP) and neutral detergent fiber digestibility. Blood pH remained unaltered across all diets. A linear increase in ruminal $NH_3-N$ and BUN was noted with increasing level of dietary RDP. The increase in BUN was due to increased ruminal $NH_3-N$ concentrations. A positive N balance was noted across all diets. The results are interpreted to suggest that buffalo bulls can utilize up to 82% RDP of total CP (16%) with optimum results.