• Title/Summary/Keyword: pH electrode

Search Result 692, Processing Time 0.026 seconds

Amperometric Glucose Biosensor Based on Sol-Gel-Derived Zirconia/Nafion Composite Film as Encapsulation Matrix

  • Kim, Hyun-Jung;Yoon, Sook-Hyun;Choi, Han-Nim;Lyu, Young-Ku;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • An amperometric glucose biosensor has been developed based on the use of the nanoporous composite film of sol-gel-derived zirconia and perfluorosulfonated ionomer, Nafion, for the encapsulation of glucose oxidase (GOx) on a platinized glassy carbon electrode. Zirconium isopropoxide (ZrOPr) was used as a sol-gel precursor for the preparation of zirconia/Nafion composite film and the performance of the resulting glucose biosensor was tuned by controlling the water content in the acid-catalyzed hydrolysis of sol-gel stock solution. The presence of Nafion polymer in the sol-gel-derived zirconia in the biosensor resulted in faster response time and higher sensitivity compared to those obtained at the pure zirconia- and pure Nafion-based biosensors. Because of the nanoporous nature of the composite film, the glucose biosensor based on the zirconia/Nafion composite film can reach 95% of steady-state current less than 5 s. In addition, the biosensor responds to glucose linearly in the range of 0.03-15.08 mM with a sensitivity of 3.40 $\mu$A/mM and the detection limit of 0.037 mM (S/N = 3). Moreover, the biosensor exhibited good sensor-to-sensor reproducibility (~5%) and long-term stability (90% of its original activity retained after 4 weeks) when stored in 50 mM phosphate buffer at pH 7 at 4 ${^{\circ}C}$.

A Glutamate Oxidase-based Biosensor for the Determination of Glutamate (Glutamate Oxidase를 이용한 Glutamate 측정용 Biosensor의 개발)

  • Lee, Young-Chun;Lee, Sang-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1075-1081
    • /
    • 1997
  • The objective of this research was to develop a glutamate enzyme sensor for rapid determinations of glutamate in samples. Glutamate oxidase was immobilized onto activated nylon, chitosan and other membranes. The enzymic and nonactin membranes were attached to an ammonia electrode to detect ammonia generated by the reaction between glutamate oxidase and glutamate. The enzyme immobilized on activated nylon membrane was stable for 2 months, and was able to perform about 250 glutamate determinations without losing activities. The enzyme immobilized on chitosan membrane had higher enzyme activity, but was not as much stable as that immobilized on nylon. The glutamate biosensor was able to accurately determine $0.1{\sim}5\;mM$ of glutamate in samples.

  • PDF

Detection of deoxynivalenol using a MOSFET-based biosensor (MOSFET형 바이오 센서를 이용한 디옥시 니발레놀의 검출)

  • Lim, Byoung-Hyun;Kwon, In-Su;Lee, Hee-Ho;Choi, Young-Sam;Shin, Jang-Kyoo;Choi, Sung-Wook;Chun, Hyang-Sook
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • We have detected deoxynivalenol(DON) using a metal-oxide-semiconductor field-effect-transistor(MOSFET)-based biosensor. The MOSFET-based biosensor is fabricated by a standard complementary metal-oxide-semiconductor(CMOS) process, and the biosensor's electrical characteristics were investigated. The output of the sensor was stabilized by employing a reference electrode that applies a fixed bias to the gate. Au which has a chemical affinity for thiol was used as the gate metal to immobilize a self-assembled monolayer(SAM) made of 16-mercaptohexadecanoic acid(MHDA). The SAM was used to immobilize anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti- deoxynivalenol antibody. Anti-deoxynivalenol antibody and deoxynivalenol were bound by an antigen-antibody reaction. In this study, it is confirmed that the MOSFET-based biosensor can detect deoxynivalenol at concentrations as low as 0.1 ${\mu}g$/ml. The measurements were performed in phosphate buffered saline(PBS; pH 7.4) solution. To verify the interaction among the SAM, antibody, and antigen, surface plasmon resonance(SPR) measurements were performed.

Electrochemical Detection of Hydroxychloroquine Sulphate Drug using CuO/GO Nanocomposite Modified Carbon Paste Electrode and its Photocatalytic Degradation

  • G. S. Shaila;Dinesh Patil;Naeemakhtar Momin;J. Manjanna
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • The antimalarial drug hydroxychloroquine sulphate (HCQ) has taken much attention during the first COVID-19 pandemic phase for the treatment of severe acute respiratory infection (SARI) patients. Hence it is interest to study the electrochemical properties and photocatalytic degradation of the HCQ drug. Copper oxide (CuO) nanoparticles, graphene oxide (GO) and CuO/GO NC (nanocomposite) modified carbon paste electrodes (MCPE) are used for the detection of HCQ in an aqueous medium. Electrochemical behaviour of HCQ (20 μM) was observed using CuO/MCPE, GO/MCPE and CuO/GO NC/MCPE in 0.1 M phosphate buffer at pH 7 with a scan rate of 20 to 120 mV s-1 by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) of HCQ was performed for 0.6 to 16 μM HCQ. The CuO/GO NC/MCPE showed a reasonably good sensitivity of 0.33 to 0.44 μA μM cm-2 with LOD of 69 to 92 nM for HCQ. Furthermore, the CuO/GO NC was used as a catalyst for the photodegradation of HCQ by monitoring its UV-Vis absorption spectra. About 98% was degraded in about 34 min under visible light and after 4 cycles it was 87%. The improved photocatalytic activity may be attributed to decrease in bandgap energy and enhanced ability for the electrons to migrate. Thus, CuO/GO NC showed good results for both sensing and degradation applications as well as reproducibility.

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.

Sintering of ZrO2-modified 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 Piezoelectric Ceramics in a Reduced Atmosphere (ZrO2 첨가된 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 압전세라믹스의 환원분위기 소결)

  • Kang, Kyung-Min;Cho, Jeong-Ho;Nam, Joong-Hee;Ko, Tae-Gyung;Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.563-567
    • /
    • 2011
  • The most widely used piezoelectric ceramics are lead oxide based ferroelectrics (PZT). However, the toxicity of lead oxide and its high vapor pressure during processing have led to a demand for alternative lead-free piezoelectric materials. We synthesized Lead-free piezoelectric ceramics of $0.96(K_{0.5}Na_{0.5})NbO_3-0.04SrZrO_3+x$ mol% $ZrO_2$ [KNN-SZ+$xZrO_2$; x= 0~0.10] doped with 0.1 wt% $MnO_2$ by a conventional solid state method. We investigated the piezoelectric properties and microstructures of these disk samples sintered in reduced atmosphere in order to evaluate the possibility of the multilayered piezoelectric ceramics having the base metal such as Ni as a internal electrode. All of these KNN-SZ samples sintered in 3%$H_2-97%N_2$ atmosphere at $1,140^{\circ}C$ exhibit pure perovskite structure irrespective of the content of $ZrO_2$. Meanwhile, the sintering denisty and piezoelectric properties such as $K_p$, $Q_m$ and $d_{33}$ of KNN-SZ samples as a function of $ZrO_2$ content show the maxima ($k_p$=28.07%, $Q_m$= 101.34, $d_{33}$= 156 pC/N) at x= 0.04 and it is likely that there is some morphotropic phase boundary(MPB) in this KNN-SZ+$xZrO_2$ composition system. These results indicate that the ceramic composition is a promising candidate material for applications in lead free multilayer piezoelectric ceramics.

Annealing Characteristics of Electrodeposited Cu(In,Ga)Se2 Photovoltaic Thin Films (전해증착 Cu(In,Ga)Se2 태양전지 박막의 열처리 특성)

  • Chae, Su-Byung;Shin, Su-Jung;Choi, Jae-Ha;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.661-668
    • /
    • 2010
  • Cu(In,Ga)$Se_2$(CIGS) photovoltaic thin films were electrodeposited on Mo/glass substrates with an aqueous solution containing 2 mM $CuCl_2$, 8 mM $InCl_3$, 20 mM $GaCl_3$ and 8mM $H_2SeO_3$ at the electrodeposition potential of -0.6 to -1.0 V(SCE) and pH of 1.8. The best chemical composition of $Cu_{1.05}In_{0.8}Ga_{0.13}Se_2$ was found to be achieved at -0.7 V(SCE). The precursor Cu-In-Ga-Se films were annealed for crystallization to chalcopyrite structure at temperatures of 100-$500^{\circ}C$ under Ar gas atmosphere. The chemical compositions, microstructures, surface morphologies, and crystallographic structures of the annealed films were analyzed by EPMA, FE-SEM, AFM, and XRD, respectively. The precursor Cu-In-Ga-Se grains were grown sparsely on the Mo-back contact and also had very rough surfaces. However, after annealing treatment beginning at $200^{\circ}C$, the empty spaces between grains were removed and the grains showed well developed columnar shapes with smooth surfaces. The precursor Cu-In-Ga-Se films were also annealed at the temperature of $500^{\circ}C$ for 60 min under Se gas atmosphere to suppress the Se volatilization. The Se amount on the CIGS film after selenization annealing increased above the Se amount of the electrodeposited state and the $MoSe_2$ phase occurred, resulting from the diffusion of Se through the CIGS film and interaction with Mo back electrode. However, the selenization-annealed films showed higher crystallinity values than did the films annealed under Ar atmosphere with a chemical composition closer to that of the electrodeposited state.

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.

The Influence of Current Flow on OH Radical Generation in a Photocatalytic Reactor of TiO2 Nanotube Plates (전류흐름에 따른 TiO2 nanotube 광촉매의 OH radical 생성량 평가)

  • Kim, Da-Eun;Lee, Yong-Ho;Kim, Dae-Won;Pak, Dae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.349-356
    • /
    • 2017
  • OH radical generation is one of the common method to evaluate photocatalytic activity. In many of previous studies, only the UV(Ultraviolet) light was applied to test photocatalytic ability of $TiO_2$ nanotubes by studying probe compound(4-Chlorobenzoic acid) concentration change in solution. Also, $TiO_2$ nanotubes were found to show some electrochemical characteristics when the flow of electric current was applied. In this study, the flow of electric current and UV light were applied at the same time to determine whether electrochemical characteristics of $TiO_2$ nanotube plate can give synergetic effect on the photocatalytic activity. $TiO_2$ nanotube was grown on Ti by anodic oxidation to create $TiO_2$ nanotube plate which can be used as a photocatalyst and a electrode that can undergo AOP(Advanced Oxidation Process) for water treatment. Probe compound solution was prepared using 4-chlorobenzoic acid and $H_2O$ as a solvent. NaCl was added to give conductivity to work as electrolyte. As a result, enough level of electric current flow was found to give synergetic photocatalytic effect which can be used for efficient AOP water treatment method.