• Title/Summary/Keyword: pH센서

Search Result 348, Processing Time 0.028 seconds

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties (Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성)

  • Kim, Bo-Young;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

이산화티타늄($TiO_2$)의 Anatase상에 따른 가스감응 특성의 영향

  • O, Sang-Jin;Heo, Jeung-Su;Lee, Han-Yong;Jo, Bong-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.30.2-30.2
    • /
    • 2009
  • TiO2는 3가지의 결정구조를 가지고 있으며 결정 입자, 구조, 상의 형태에 따라서 성질 및 기능에 영향을 주고 있다. anatase상의 애너지 밴드갭과 전자와의 재결합 확률이 크기 때문에 Rutile상 보다 우수한 성질을 갖고 있어 산화물 반도체로 이용하는 것이 적합하다. 본 실험에서는 나노로드의 TiO2를 수열처리법에 의해 합성한 후 박막을 제조하여 감응특성을 조사하였다. X선 회절분석기(X-Ray Diffraction)로 분석결과 ph=1의 루타일상을 제외하고, pH=2~7의 더 넓은 구간에서 뚜렷한 회절피크의 anatase 상이 나타났으며 다른 비정질상이 발생되지 않는 결정성이 좋은 단결정임이 나타났다. NaOH solution 을 이용하여 수열처리후 $180^{\circ}C$이상의 특정 온도 구간에서 수십 나노 로드 형태로의 2차 성장된 모습을 TEM과 EDS로 결정구조와 화학조성을 분석하였다. 그리고 BET 측정을 통해 $180^{\circ}C$의 소성온도에서 TiO2 입자의 비표면적이 가장 우수한 것으로 나타났다. 나노로드의 수용액을 Al2O3기판의 감지막 위에 떨어뜨려 네트워크된 막을 형성한후에 센서를 제작하였다. 히터 전압이 $400^{\circ}C$에서 나노 파우더센서에서는 반응이 일어나지 않은 반면, 나노 로드센서는 CH3SH에서 28% 의 높은 감도를 얻었고, Toluene의 반응에서는 15%의 감도가 나타났다. 그 외 NO, CO, H2등의 측정에서 아무런 반응이 일어나지 않았다. 이는 비교적 기공이 큰분자(Size)를 가진 CH3SH=76nm, Toluene=60nm에서 반응이 일어난 반면, H2=28nm, CO=22nm에서 감도가 나타나지 않은 것을 보아 흡착분자크기에 의한 영향이 큰 것으로 나타났다.

  • PDF

Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film (탄소나노튜브 대면적 어셈블리를 통한 고감도-고선택성 과산화수소 센서 개발)

  • Lee, Dongwook;Ahn, Heeho;Seo, Byeong-Gwuan;Lee, Seung-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.229-235
    • /
    • 2021
  • This study presents a simple approach for the assembly of a free-standing conductive electronic nanofilm of single-walled carbon nanotubes (SWNTs) suitable for enzymatic electrochemical biosensors. A large-scale SWNT electronic film was successfully produced by the dialysis of p-Terphenyl-4,4''-dithiol (TPDT)-treated SWNTs. Furthermore, Horseradish peroxidase (HRP) was immobilized on the TPDT-SWNT electronic film, and the enzymatic detection of hydrogen peroxide (H2O2) was demonstrated without mediators. The detection of H2O2 in the negative potential range (-0.4 V vs. Ag/AgCl) was achieved by direct electron transfer of heme-based enzymes that were immobilized on the TPDT-SWNT electronic film. The SWNT-based biosensor exhibited a wide detection range of H2O2 from 10 µM to 10 mM. The HRP-doped SWNT electronic film achieved a high sensitivity of 342 ㎛A/mM·cm2 and excellent selectivity against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, and acetaminophen.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

Optical Voltage Sensor Using $SiO_2$ Pockels Cell ($SiO_2$ 포켈 소자를 이용한 광전압센서)

  • Shin, K.H.;Chun, J.P.;Cho, H.K.;Kim, S.K.;Kim, Y.H.;Kim, Y.S.;Park, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.846-849
    • /
    • 1991
  • This paper reports the principle, system confiquration, test results of optical voltage sensor using quartz pockels cell. The Pockels effect of quartz material is used for designing optical voltage sensor. The quarts material has very high half-wave voltage, so, it can be applied to measure high voltage level. Experimental results show that the optical voltage sensor has excellent linear characteristics within the applied AC voltage of 1200V.

  • PDF

Fabrication and Electrical Properties of Anodic Aluminum Oxide Membrane with Various Anodizing Temperatures for Biosensor (바이오센서로 응용을 위한 양극산화알루미늄의 양극산화 온도에 따른 제작 및 전기적 특성)

  • Yeo, Jin-Ho;Lee, Sung-Gap;Kim, Yong-Jun;Lee, Young-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.394-398
    • /
    • 2014
  • We fabricated the electrolyte-dielectric-metal (EDM) sensor on the base of AAO (anodic aluminum oxide) template with variation of the anodizing temperature. When a surface is immersed or created in an aqueous solution, a discontinuity is formed at the interface where such physicochemical variables as electrical potential and electrolyte concentration change significantly from the aqueous phase to another phase. Because of the different chemical potentials between the two phases, charge separation often occurs at the interfacial region [1]. This interfacial region, togeter with the charged surface, is usually known as the electrical double layer (EDL) [2]. The structural and electrochemical properties of AAO sensor were investigated for applications in capacitive pH sensors. To change the thickness of the AAO template, the anodizing temperature was varied from $5^{\circ}C$ to $20^{\circ}C$, the thickness of the AAO template invreased from 300 nm to 477 nm. The pH sensitivity of sensors with the anodizing temperature of $20^{\circ}C$ showed the highest value of 56.4 mV/pH in the pH range of 3 to 11. The EDM sensor with the anodizing temperature of $20^{\circ}C$ exhibited the best long-term stability of 0.037 mV/h.

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations

Fabrication of Capacitive-Type Humidity Sensor with Poly(p-phenylene ether sulfone) (폴리(페닐렌에테르설폰)을 이용한 용량형 습도센서의 제조)

  • Cho, Jae-Ick;Choi, Kyoon;Kim, Chang-Jung;Kim, Byung-Ik;Park, Sueng-Hyun;Bang, Gi-Suk
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.207-209
    • /
    • 2006
  • We fabricated a capacitive-type humidity sensor using poly (p-phenylene ether sulfone: PES) as a humidity sensitive layer. The PES was dissolved in m-cresol $(CH_3C_6H_4OH)$ and spin-coated on ITO-coated glass substrate. Gold was deposited by sputtering as a water-permeable upper electrode. The capacitance of the sensor was inversely proportional to sensing film thicknesses and showed an excellent linearity of less than 1% in the humidity range of 20 to 90%. The sensor haying a $1.4{\mu}m$ sensing layer showed a hysteresis of 1.3% and a good sensitivity of 1.14 at 20 kHz.

Synthesis of Shape Reconfigurable Janus Particles by External pH Stimuli (산세기 조절을 통해 모양 변형이 가능한 야누스 입자의 제조)

  • Eom, Naye;Kim, Jongmin;Kang, Sung-Min;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.226-231
    • /
    • 2014
  • This study presents a micromolding for the synthesis of Janus particles with reconfigurable shape by pH stimuli. First, we use acrylic acid (AA) as pH responsive monomer in the hydrophilic part and trimethylolpropane triacylate (TMPTA) in the hydrophobic part, respectively. The change of acidity in solvent induces the swelling of hydrophilic part in the Janus particles. The pH-responsive Janus particles show different swelling ratio of hydrophilic part in according to composition of acrylic acid in diverse range (0-70% v/v) and pH (3-11). As the concentration of acrylic acid in the hydrophilic part and environmental pH increase, the hydrophilic part in the Janus particles is proportionally swelled. Second, we fabricate novel type of Janus particles with two different hydrophilicities. As a proof of concept, we have applied acrylic acid (AA) and 2-(dimethylamino)ethyl methacrylate (DAEMA) into each part because the monomers provide reverse responsive activity. As expected, these Janus particles show different shape anisotropies with reconfigurable property in accordance with the polarity of each part at same acidity of environmental solvent. We envision that the stimuli responsive Janus particles have a wide application from fundamental science to diagnostic apparatus.

Development of Active thin Film Optical Waveguide $C^{2+}$ -ion Sensor (능동형 박막 광도파로 칼슘 이온 센서의 개발)

  • Lee, Su-Mi;Gang, Sin-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.49-54
    • /
    • 2000
  • A new functional organic thin film optical waveguide ion sensor is designed, which can select a specific ion, i.e., $Ca^{2+}$ -ion. The sensing membrane was composed of PVC-PVAC-PVA copolymer matrix based on anionic cation-selective chromoionophor(ETH5294), neutral ionophore(K23El), anionic site and plasticizer and it was coated on the etched glass substrate as embeded type optical waveguide itself. The sensor sensitivity dependence on waveguide length and thickness, contence of chromoionophore, and each mode was investigated. And this sensor could detect $Ca^{2+}$ ion in concentrations ranging from 1$\times$10­6~1M(with 0.05M tris-HCI buffer solution of pH7.4) by measuring the absorbance change at 514nm of light. Utilizing thin film membrane, the fast response time and high sensitivity are obtained. Also, it is expected that this sensor can be applied to various biochemical important ions.ons.

  • PDF