• Title/Summary/Keyword: pERK 1/2

Search Result 618, Processing Time 0.031 seconds

Immuno-Modulatory Activities of Polysaccharides separated from Chrysanthemum zawadskii var. latilobum in Macrophage Cells (구절초(Chrysanthemum zawadskii var. latilobum)에서 분리된 다당류의 대식세포 면역조절 활성)

  • Sung, Nak-Yun;Park, Yoo-Young;Kim, Yi-Eun;Cho, Eun-Ji;Kim, Mi-Hwan;Ryu, Gi-Hyung;Byun, Eui-Hong;Park, Youn-Je
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.431-437
    • /
    • 2016
  • Macrophages play a pivotal role in the innate and adaptive immune systems. This study investigated the immuno-modulatory activities of polysaccharides separated from Chrysanthemum zawadskii var. latilobum (CZPS) in macrophages. Polysaccharides from Chrysanthemum zawadskii var. latilobum were extracted by the ethanol precipitation method. RAW 264.7 mouse macrophage cell line was treated with CZPS (4 to $128{\mu}g/mL$), and there was no cytotoxicity at a dose below $32{\mu}g/mL$. The levels of nitric oxide (NO) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, IL-$1{\beta}$) production in the CZPS treated group ($32{\mu}g/mL$) were $6.5{\pm}0.12{\mu}m$ (NO), $1252.8{\pm}79.85$ (TNF-${\alpha}$), $305.4{\pm}29.41$ (IL-6), and $683.3{\pm}59.71$ (IL-$1{\beta}$), respectively, and they were significantly increased when compared to the control group; $2.2{\pm}0.03{\mu}m$ (NO), $452.3{\pm}38.34$ (TNF-${\alpha}$), $31.7{\pm}5.75$ (IL-6), and $184.1{\pm}11.52$ (IL-$1{\beta}$). Additionally, protein expression of inducible nitric oxide synthase (iNOS) and phosphorylation of MAPKs and NF-${\kappa}B$ expression were significantly increased upon CZPS treatment. Therefore, these results indicated that polysaccharides separated from Chrysanthemum zawadskii var. latilobum (CZPS) may have a potential immunomodulatory activity in macrophages through MAPKs and NF-${\kappa}B$ signaling, and this information is useful for the development of immune enhancing adjuvant materials using a natural ingredient.

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

  • Kim, Sang-Cheol;Kang, Jung-Il;Hyun, Jin-Won;Kang, Ji-Hoon;Koh, Young-Sang;Kim, Young-Heui;Kim, Ki-Ho;Ko, Ji-Hee;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.417-426
    • /
    • 2017
  • 4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-${\beta}$ signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-${\beta}$-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-${\beta}1$-induced G1/G0 phase arrest and TGF-${\beta}1$-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-${\beta}1$-induced canonical pathway. We observed that ERK phosphorylation by TGF-${\beta}1$ was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-${\beta}1$-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-${\beta}1$-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-${\beta}1$-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-${\beta}1$-induced cell cycle arrest.

Evaluation of Efficacy evaluation of Hwangryunhaedok-tang and Gungangbuja-tang on lipopolysaccharide (LPS)-induced inflammation mouse model (Lipopolysaccharide로 유도된 염증 mouse model에서의 황련해독탕(黃連解毒湯)과 건강부자탕(乾薑附子湯)의 효능평가)

  • Choi, You-Youn;Kim, Mi-Hye;Lee, Tae-Hee;Yang, Woong-Mo
    • Herbal Formula Science
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2012
  • Objectives : The aim of this study was to evaluate the efficacy of Hwangryunhaedok-tang (HHT) and Gungangbuja-tang (GBT) on lipopolysaccharide (LPS)-induced mouse model of inflammation. HHT and GBT are one of the representative prescriptions of cold drug and one of the representative prescriptions of hot drug, respectively. For experimental evaluation of their efficacy, we investigated the anti-inflammatory effects of HHT and GBT on LPS-induced inflammation and the mechanisms of their action. Methods : ICR mice were given a HHT (50, 500 mg/kg), GBT (100, 1000 mg/kg) extract orally on three consecutive days. On the third day, they were administered LPS intraperitoneally (35 mg/kg), 1 h after the last sample administration. Blood and liver samples were taken 6 h after the LPS challenge. Cytokine expression and inflammation-related protein factor analyses were performed by Western blotting. Results : Oral administration of HHT significantly reduced pro-inflammatory cytokines, including interleukin (IL)-6, and interferon (IFN)-${\gamma}$ in the serum. While GBT inhibited an increase of IL-6, IFN-${\gamma}$ was not affected. Immunoblot analysis showed that LPS-induced NF-${\kappa}b$ activation was inhibited by GBT, meanwhile HHT only inhibited NF-${\kappa}b$ expression at high does (500 mg/kg). In addition, HHT and GBT inhibited LPS-induced phosphorylation of Erk1/2, Jnk and p38 MAPKs. GBT also significantly inhibited i-Nos and Cox-2 expression, and HHT inhibited only i-Nos expression. Conclusions : Both of HHT and GBT showed anti-inflammatory effects against LPS-induced endotoxemia. However, HHT significantly decreased inflammatory cytokine levels, such as IL-6 and IFN-${\gamma}$ more than GBT, while GBT significantly inhibited inflammatory proteins, including NF-${\kappa}b$, MAP Kinases, i-Nos and Cox-2, more than HHT. These results suggest that HHT and GBT regulate the different mechanisms of action and pathways, presumably by regulating cytokine levels (IL-6, IFN-${\gamma}$), NF-${\kappa}b$ activation, and several pro-inflammatory gene expression, although both of HHT and GBT have anti-inflammatory effects.

Immunotoxicological Effects of Aripiprazole: In vivo and In vitro Studies

  • Baek, Kwang-Soo;Ahn, Shinbyoung;Lee, Jaehwi;Kim, Ji Hye;Kim, Han Gyung;Kim, Eunji;Kim, Jun Ho;Sung, Nak Yoon;Yang, Sungjae;Kim, Mi Seon;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.365-372
    • /
    • 2015
  • Aripiprazole (ARI) is a commonly prescribed medication used to treat schizophrenia and bipolar disorder. To date, there have been no studies regarding the molecular pathological and immunotoxicological profiling of aripiprazole. Thus, in the present study, we prepared two different formulas of aripiprazole [Free base crystal of aripiprazole (ARPGCB) and cocrystal of aripiprazole (GCB3004)], and explored their effects on the patterns of survival and apoptosis-regulatory proteins under acute toxicity and cytotoxicity test conditions. Furthermore, we also evaluated the modulatory activity of the different formulations on the immunological responses in macrophages primed by various stimulators such as lipopolysaccharide (LPS), pam3CSK, and poly(I:C) via toll-like receptor 4 (TLR4), TLR2, and TLR3 pathways, respectively. In liver, both ARPGCB and GCB3004 produced similar toxicity profiles. In particular, these two formulas exhibited similar phospho-protein profiling of p65/nuclear factor $(NF)-{\kappa}B$, c-Jun/activator protein (AP)-1, ERK, JNK, p38, caspase 3, and bcl-2 in brain. In contrast, the patterns of these phospho-proteins were variable in other tissues. Moreover, these two formulas did not exhibit any cytotoxicity in C6 glioma cells. Finally, the two formulations at available in vivo concentrations did not block nitric oxide (NO) production from activated macrophage-like RAW264.7 cells stimulated with LPS, pam3CSK, or poly(I:C), nor did they alter the morphological changes of the activated macrophages. Taken together, our present work, as a comparative study of two different formulas of aripiprazole, suggests that these two formulas can be used to achieve similar functional activation of brain proteins related to cell survival and apoptosis and immunotoxicological activities of macrophages.

Inhibitory Effect of Extract from Ostericum koreanum on LPS-induced Proinflammatory Cytokines Production in RAW264.7 Cells (LPS로 자극한 RAW264.7 세포에서 강활 추출물의 염증성세포활성물질의 억제효과)

  • Park, Hee-Je;Bae, Gi-Sang;Kim, Do-Yun;Seo, Sang-Wan;Park, Kyung-Bae;Kim, Byung-Jin;Song, Je-Moon;Lee, Kyung-Yong;Na, Chul;Shin, Byung-Chul;Park, Sung-Joo;Song, Ho-Joon;Hwang, Sung-Yeon
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • Objectives : The present study was designed to investigate whether Ostericum koreanum (OK) could regulate lipopolysaccharide (LPS)-induced inflammatory response in vitro and in vivo. Methods : To evaluate of anti-inflammatory effect of OK, we examined Nitric oxide (NO), proinflammatory cytokines production in LPS-stimulated RAW264.7 cells. Furthermore, we checked molecular mechanism especially in the phosphorylation of mitogen-activated protein kinases (MAPKs) and the degradation of inhibitory kappa B a ($Ik-B{\alpha}$) using western blot and also investigated survival of mice in LPS-mediated endotoxin shock. Results : 1. Extract from OK itself have weak cytotoxic effect on RAW264.7 cells. Extract from OK inhibited LPS-induced NO, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, IL-6 and IL-10 production in RAW264.7 cells. 2. OK inhibited the phosphorylation of MAPKs, such as p38, extracelluar signal-regulated kinase (ERK1/2) and c-Jun NH2-terminal kinase (JNK) and also the degradation of $I{\kappa}-B{\alpha}$ in the LPS-stimulated RAW264.7 cells 3. OK did not inhibit LPS-induced endotoxin shock. Conclusions : OK down-regulated LPS-induced NO and cytokines production through suppressing activation of MAPKs and degradation of $I{\kappa}-B{\alpha}$. Our results suggested that OK may be a beneficial drug against inflammatory diseases.

  • PDF

Inhibitory Effect of Extract of Teucrium veronicoides on the Production of Inflammatory Cytokines (곽향 추출물의 염증성세포활성물질 억제효과)

  • Bae, Gi-Sang;Park, Hee-Je;Kim, Do-Yun;Seo, Sang-Wan;Park, Kyung-Bae;Kim, Byung-Jin;Song, Je-Moon;Lee, Kyung-Yong;Na, Chul;Shin, Byung-Chul;Park, Sung-Joo;Song, Ho-Joon;Hwang, Sung-Yeon
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.119-125
    • /
    • 2008
  • Objectives : The purpose of this paper was to investigate the anti-inflammatory effects of extract from Teucrium veronicoides (TV) on the RAW 264.7 cells. Methods : To evaluate of anti-inflammatory of TV, we examined the cytokine productions on lipopolysacchride (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms using Western blot. Furthermore, We examined LPS-induced endotoxin shock. Results : 1. Extract from TV itself does not have any cytotoxic effect. 2. Extract from TV reduced LPS-induced Nitric oxide (NO),interleukin (IL)-1b, IL-6 and IL-10, tumor necrosis factor-a (TNF-a) production in RAW 264.7 cells. 3. TV inhibited the activation of mitogen-activated protein kinases (MAPKs) such as p38, extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-Ba) in the LPS-stimulated RAW 264.7 cells. 3. TV slightly increased the duration of survival after LPS-induced endotoxin shock. Conclusions : TV down-regulated LPS-induced NO and cytokines production, which could provide a clinical basis for anti-inflammatory properties of TV.

  • PDF

Anti-inflammatory Activities Verification of Ambrosia trifida L. extract in RAW 264.7 Cells (RAW 264.7 세포에서의 단풍잎돼지풀 추출물의 항염증 활성 검증)

  • Yoo, Dan-Hee;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.79-89
    • /
    • 2020
  • This study was performed to evaluate the anti-inflammatory activities of 70% ethanol extract from Ambrosia trifida L. (AT). The electron donating ability and ABTS+ radical scavenging ability of extract from AT was shown to be 84.1% and 92.5% at 1,000 ㎍/ml concentration. The astringent effect of extract from AT was shown to be 94.7% at 1,000 ㎍/ml. The anti- inflammatory activities of extract of AT were investigated using RAW 264.7 cells induced by lipopolysaccharide (LPS). The cell toxicity effect of AT extract on RAW 264.7 performed MTT assay. As a result of the measured cell toxicity effect, 90% or more was shown with cell viability at a 500 ㎍/ml concentration. In nitric oxide synthesis inhibition effect, it was shown that extract from AT concentration dependent inhibited nitric oxide production. The protein expression inhibitory effect of AT extract was measured by western blot at 25, 50, and 100 ㎍/ml concentration and the β-actin used as a positive control. Consequently, the inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 protein expression inhibitory effect was decreased by 8.6%, 25.1% at 100 ㎍/ml concentration. The phosphorylation of extracellular signal-regulated kinase 1/2, p38, c-Jun NH2-terminal kinase and Iκ-Bα protein expression inhibitory effect was a decreased dependent concentration. The mRNA expression inhibitory effect was measured by reverse transcription - polymerase chain reaction at 25, 50, and 100 ㎍/ml concentration and the glyceraldehyde-3-phosphate dehydrogenase used as a positive control. Consequently, the iNOS, COX-2, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α mRNA expression inhibition effect was a decreased dependent concentration in an LPS-activated macrophage. In conclusion, AT extract may have some effects on inflammatory factors as potential anti-inflammatory agents and natural substance for cosmetics.

Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells (펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구)

  • Jeong, Ji-Young;Son, Yonghae;Kim, Bo-Young;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1251-1257
    • /
    • 2019
  • Peptidoglycan (PG) is found in atheromatous lesions of arteries, where monocytes/macrophages express inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$). This study investigated the effects of PG on $TNF-{\alpha}$ expression and examined possible cellular factors involved in $TNF-{\alpha}$ upregulation. The overall aim was to identify the molecular mechanisms underlying inflammatory responses to bacterial pathogen-associated molecular patterns in the artery. Exposure of human THP-1 monocytic cells to PG enhanced the secretion of $TNF-{\alpha}$ and induced its gene transcription. Inhibition of TLR-2/4 with OxPAPC significantly inhibited $TNF-{\alpha}$ gene expression, whereas inhibition of LPS by polymyxin B did not. The PG-induced expression of $TNF-{\alpha}$ was also significantly suppressed by pharmacological inhibitors that modulate activities of cellular signaling molecules; for example, U0126 (an ERK inhibitor), SB202190 (a p38 MAPK inhibitor), and SP6001250 (a JNK inhibitor) significantly attenuated PG-induced transcription of $TNF-{\alpha}$ and secretion of its gene product. $TNF-{\alpha}$ expression was also inhibited by rapamycin (an mTOR inhibitor), LY294002 (a PI3K inhibitor), and Akt inhibitor IV (an Akt inhibitor). ROS-regulating compounds, like NAC and DPI, also significantly attenuated $TNF{\alpha}$ expression induced by PG. These results suggest that PG induces $TNF-{\alpha}$ expression in monocytes/macrophages by multiple molecules, including TLR-2, PI3K, Akt, mTOR, MAPKs, and ROS.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4

  • Lee, Su Jung;Noh, Kyung Tae;Kang, Tae Heung;Han, Hee Dong;Shin, Sung Jae;Soh, Byoung Yul;Park, Jung Hee;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Park, Won Sun;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • In this study, we show that Mycobacterium avium subsp. paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-${\alpha}$, and IL-$1{\beta}$) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naive T cells to polarized $CD4^+$ and $CD8^+$ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of $CD4^+$ and $CD8^+$ T cells.