• Title/Summary/Keyword: p63 gene

Search Result 181, Processing Time 0.026 seconds

Characteristics of the gene resources and selected strains of Agrocybe cylindracea (버들송이버섯(Agrocybe cylindracea)유전자원 및 선발계통의 특성)

  • Heo, Byong-Soo;Yoo, Young-Jin;Seo, Sang-Young;Choi, Kyu-Hwan;Choi, Young Min;Kwon, Seog-Ju;Jang, Kab-Yeul
    • Journal of Mushroom
    • /
    • v.17 no.2
    • /
    • pp.52-63
    • /
    • 2019
  • Agrocybe spp. belongs to the Agaricales order, Bolbitiaceae family, and Agrocybe genus. In Korea, so far, it has been cultivated through bottle cultivation; therefore, this study was conducted for the development of a new cultivar using the bag cultivation method for quantitative improvement. Thirty-three gene resources of Agrocybe spp. were collected and their quantity and characteristics of bag cultivation were examined. Next, 5 kinds of crossing parents were selected based on the cultivation period and shape of the fruit body. Seven strains were selected through 3 cross combinations. The 7 selected strains and the comparative cultivar 'Cham' were cultivated in a bag. As a result, the cultivation period was 49 days for 'JBAC15-1' and 50 days for 'JBAC15-6' which are 4 days and 3 days less than the cultivation period of the comparative cultivar 'Cham'(53 days), respectively. Cultivation periods of other strains except for 'JBAC15-1' and 'JBAC15-1' were longer than that of the comparative cultivar'Cham'. The best ratio of primordia formation among the selected strains was found to be that of 'JBAC15-1' with 96.1% followed by 'JBAC15-6' with 94.5%. These rates were 3.1% and 1.5% higher than the ratio of primordia formation of the comparative cultivar 'Cham', which is found to be 93.0%. The quantity was maximum in the 'JBAC15-1' cultivar with 176.8 g per bag followed by 'JBAC15-6' with 168.7 g per bag. The quantities were 10% and 5% more than the comparative cultivar 'Cham' with 160.7 g per bag. Based on these results, 'JBAC15-1' and 'JBAC15-6', which had shorter cultivation periods and more quantities than the comparative cultivar 'Cham' were finally selected. For the selected strains of 'JBAC15-1' and 'JBAC15-6', mycelial growth was observed to be optimal on PDA medium and the optimum temperature was $27.5^{\circ}C$. The optimum pH was pH 5 for 'JBAC15-1' and pH 6 for 'JBAC15-6'. The color of the pileus of the fruit body was dark brown in 'JBAC15-1' and 'Cham' and light brown in 'JBAC15-6'. The pileus was hemispherical in shape in both 'JBAC15-1' and 'Cham'. However, the colors of the stem were different - light brown in 'JBAC15-1', white in 'JBAC15-6', and ivory in the comparative cultivar 'Cham'.

Effect of the Extraction Method on the Soybean Embryo Factor 3 Activity (추출 방법에 따른 대두 배인자 3 역가)

  • Lee, Kyung-Hoon;Chung, Dong-Hyo;Kim, Seong-San;Song, Youn-Ho;Kim, Woo-Yeon
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.63-66
    • /
    • 1995
  • Soybean nuclear extracts were prepared to detect SEF3(soybean embryo factor 3), which is presumed to be a trans-acting factor for the expression of the soybean ${\beta}-conglycinin\;{\alpha}'$ subunit gene. To increase the specific activity of DNA probe during labeling with $[{\alpha}-^{32}P]$dATP, dATP was added to a final concentration of 1.1 mM during the chase reaction. It results in approximately four-fold increase of specific activity of the DNA probe. Effects of several modifications in preparation of soybean nuclear extracts were examined. It was found that glycerol is effective to stabilize SEF3 during the preparation of nuclear extracts and polyethylenimine could be used to increase the specific activity of SEF3 in nuclear extracts.

  • PDF

Characterization of Phosphatidylinositol Glycan, Class K (PIGK) Gene and Analysis of Association with Quantitative Traits in Pigs (돼지 Phosphatidylinositol Glycan, Class K (PIGK) 유전자의 동정과 양적형질과의 연관성 분석)

  • Lim, H.T.;Kim, J.H.;Choi, B.H.;Lee, S.H.;Park, E.W.;Kim, T.H.;Cho, I.C.;Oh, S.J.;Lee, J.G.;Jeon, J.T.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.167-176
    • /
    • 2005
  • PIGK(phosphatidylinositol glycan, class K) is a subunit of GPI transamidase that cleaves the signal peptide in proproteins and replaces it with GPI. In addition, the structure and synthesis of GPI are critically involved in some of the cellular actions of insulin. Therefore, PIGK would be essential for mammalian development and many specific cellular functions as well as for metabolic activity of insulin associated with GPI. Two types of" full-length cDNAs of porcine PIGK were cloned through RT-PCR and RACE experiments. One is thought to be a normal form(consist of 395 amino acids) and the other is considered as an alternative spliced form(consist of 371 amino acids) which contains additional 63 bps in intron 7. Since a stop codon was contained within the insertion, the spliced form has a shorter coding sequence than that of normal form. A missense mutation (T314I) in exon 6 was detected and used for genotyping to estimate association with the growth and fat deposition traits for 545 $F_2$ animals(Korean native boars ${\times}$ Landrace). From the PCR-RFLP analysis using HpyCH4III, CT genotype showed highly significant relationship(P< 0.01) with carcass fat contents.

Confirmation of genotypic effects for the bovine APM1 gene on marbling in Hanwoo cattle

  • Kwon, Anam;Srikanth, Krishnamoorthy;Lee, Eunjin;Kim, Seonkwan;Chung, Hoyoung
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.15.1-15.6
    • /
    • 2016
  • Background: Our previous study had identified the SNP (g.81966377T > C) and indel (g.81966364D > I) located in the promoter of APM1 to have a significant effect on marbling in Hanwoo. APM1 encodes an adipocytokine called adiponectin, which plays a significant role in lipogenesis. The aim of this study was to verify and validate the effect of the SNP and indel on marbling and other carcass traits in a large, representative, countrywide population of Hanwoo cattle. The carcass traits measured were marbling (MAR), backfat thickness (BFT), loin eye area (LEA), and carcass weight (CAW). Results: Primers were designed to amplify 346 bp of the genomic segment that contained the targeted SNP (g.81966377) and the indel (g.81966364). After data curation, the genotypes of 8,378 individuals identified using direct sequencing analysis estimated frequencies for C (0.686) and T (0.314) respectively showing genotype frequencies for CC (0.470), CT (0.430) and TT (0.098). The genotypes were significantly associated with MAR, BFT and LEA. The indel had significant effect on marbling (P < .0001) with strong additive genetic effects. The allele frequencies was estimated at (DEL, 0.864) and insertion (INS, 0.136) presenting genotypes of D/D (75.63 %), D/I (21.44 %), and I/I (2.92 %). Significant departure from Hardy-Weinberg equilibrium was not detected for both the SNP and the indel. Conclusion: The SNP genotypes showed significant association with MAR, BFT and LEA with strong additive genetic effects, while the indel was significantly associated with MAR. The results confirmed that the variants can be used as a genetic marker for improving marbling in Hanwoo.

Molecular Cloning and Characterization of Sesquiterpene Cyclase cDNAs from Pepper Plant Infected with Phytophthora capsici

  • Kim, Jong-Bum;Lee, Sung-Gon;Ha, Sun-Hwa;Lee, Myung-Chul;Ye, Wan-Hye;Lee, Jang-Yong;Lee, Shin-Woo;Kim, Jung-Bong;Cho, Kang-Jin;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • Pepper plants (Nogkwang, 60-day old) were inoculated with Phytophthora capsici to induce sesquiterpene cyclase associated with the biosynthesis of phytoalexin (capsidiol), a substance related to the defense against pathogens in plants. One day after inoculation, mRNA was isolated from the root, cDNA synthesized, and a library constructed in a ZAP express XR vector. The efficiency was $2{\times}10^6pfu/{\mu}g$. Sesquiterpene cyclase cDNA from Hyoscyamus muticus was labeled with $^{32}P$ and used as a probe for screening the cDNA library. After the third screening, 25 positive clones were selected. Through restrictive digestion and DNA gel-blot analysis, six different cyclase gene expressions were identified. PSC1B sequences of the six clones were determined, which were 1966 base pairs encoded 556 amino acids with an expected molecular weight of 63.8 kDa. Response against the pathogen was different between the resistant and susceptible peppers. After the infection of the pathogen, the expression of PSC genes continued in the resistant peppers while the plants were alive. The expression in the susceptible peppers lasted for only 4 days.

  • PDF

Association Analysis of TEC Polymorphisms with Aspirin-Exacerbated Respiratory Disease in a Korean Population

  • Lee, Jin Sol;Bae, Joon Seol;Park, Byung-Lae;Cheong, Hyun Sub;Kim, Jeong-Hyun;Kim, Jason Yongha;Namgoong, Suhg;Kim, Ji-On;Park, Choon-Sik;Shin, Hyoung Doo
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.58-63
    • /
    • 2014
  • The tyrosine-protein kinase Tec (TEC) is a member of non-receptor tyrosine kinases and has critical roles in cell signaling transmission, calcium mobilization, gene expression, and transformation. TEC is also involved in various immune responses, such as mast cell activation. Therefore, we hypothesized that TEC polymorphisms might be involved in aspirin-exacerbated respiratory disease (AERD) pathogenesis. We genotyped 38 TEC single nucleotide polymorphisms in a total of 592 subjects, which comprised 163 AERD cases and 429 aspirin-tolerant asthma controls. Logistic regression analysis was performed to examine the associations between TEC polymorphisms and the risk of AERD in a Korean population. The results revealed that TEC polymorphisms and major haplotypes were not associated with the risk of AERD. In another regression analysis for the fall rate of forced expiratory volume in 1 second ($FEV_1$) by aspirin provocation, two variations (rs7664091 and rs12500534) and one haplotype (TEC_BL2_ht4) showed nominal associations with $FEV_1$ decline (p=0.03-0.04). However, the association signals were not retained after performing corrections for multiple testing. Despite TEC playing an important role in immune responses, the results from the present study suggest that TEC polymorphisms do not affect AERD susceptibility. Findings from the present study might contribute to the genetic etiology of AERD pathogenesis.

Study on the Potential of Development of Materials for Bone Disease Improvement of Cudrania tricuspidata Leaf and Achyranthes japonica Nakai Complex (꾸지뽕나무 잎과 우슬 복합물의 골 질환 개선 소재 개발가능성에 대한 연구)

  • Cheong, Kil-Ho;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.5
    • /
    • pp.169-176
    • /
    • 2021
  • This study was conducted to suggest the Cudrania tricuspidata leaf and Achyranthes japonica Nakai Complex (CAC) possibility of use as a functional natural material for improving bone disease. Cudrania tricuspidata leaf and Achyranthes japonica Nakai were mixed in the same amount, extracted with hot water, and then powdered and used in the study. After, the cytotoxicity of CAC for osteoblasts (MG63 cell), osteoclasts (differentiated RAW264.7 cell), and macrophages (RAW264.7 cell) were evaluated by MTT assay, and ALP assay and TRAP assay were performed to confirm the differentiation capacity of osteoblasts and osteoclasts, respectively. In addition, the anti-inflammatory effect in macrophages was evaluated by ELISA, qRT-PCR, and western blot assay. CAC did not proliferated osteoblasts and osteoclasts, but increased ALP activity against osteoblasts differentiation and decreased TRAP activity against osteoclasts differentiation. CAC did not proliferated macrophages but decreased nitric oxide production. Also, decreased NOS2, IL1B, IL6, PTGS2, and TNFA gene expression, and JNK and p38 protein phosphorylation in a concentration-dependent manner, but ERK protein phosphorylation was not changed. As a result, CAC increased the differentiation and activation of osteoblasts, inhibited the differentiation and activation of osteoclasts, and regulated the expression of inflammatory cytokines in macrophages. Therefore, it is thought that CAC can be used as a functional natural material that prevents bone disease and has an anti-inflammatory effect.

Bacterial communities in the feces of insectivorous bats in South Korea

  • Injung An;Byeori Kim;Sungbae Joo;Kihyun Kim;Taek-Woo Lee
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.120-127
    • /
    • 2024
  • Bats serve as vectors and natural reservoir hosts for various infectious viruses, bacteria, and fungi. These pathogens have also been detected in bat feces and can cause severe illnesses in hosts, other animals, and humans. Because pathogens can easily spread into the environment through bat feces, determining the bacterial communities in bat guano is crucial to mitigate potential disease transmission and outbreaks. This study primarily aimed to examine bacterial communities in the feces of insectivorous bats living in South Korea. Fecal samples were collected after capturing 84 individuals of four different bat species in two regions of South Korea, and the bacterial microbiota was assessed through next generation sequencing of the 16S rRNA gene. The results revealed that, with respect to the relative abundance at the phylum level, Myotis bombinus was dominated by Firmicutes (47.24%) and Proteobacteria (42.66%) whereas Miniopterus fuliginosus (82.78%), Rhinolophus ferrumequinum (63.46%), and Myotis macrodactylus (78.04%) were dominated by Proteobacteria. Alpha diversity analysis showed no difference in abundance between species and a significant difference (p < 0.05) between M. bombinus and M. fuliginosus. Beta-diversity analysis revealed that Clostridium, Asaia, and Enterobacteriaceae_g were clustered as major factors at the genus level using principal component analysis. Additionally, linear discriminant analysis effect size was conducted based on relative expression information to select bacterial markers for each bat species. Clostridium was relatively abundant in M. bombinus, whereas Mycoplasma_g10 was relatively abundant in R. ferrumequinum. Our results provide an overview of bat guano microbiota diversity and the significance of pathogenic taxa for humans and the environment, highlighting a better understanding of preventing emerging diseases. We anticipate that this research will yield bioinformatic data to advance our knowledge of overall microbial genetic diversity and clustering characteristics in insectivorous bat feces in South Korea.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.