• Title/Summary/Keyword: p53 mutant

Search Result 94, Processing Time 0.027 seconds

Silencing of Mutant p53 Leads to Suppression of Human Breast Xenograft Tumor Growth in vivo (돌연변이 p53 단백질의 Silencing에 의한 사람유방암세포의 in vivo 항 종양 효과)

  • Park, Won Ick;Park, Se-Ra;Park, Hyun-Joo;Bae, Yun-Hee;Ryu, Hyun Su;Jang, Hye-Ock;Bae, Moon-Kyoung;Bae, Soo-Kyung
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • Mutant p53 (R280K) is highly expressed in MDA-MB-231 triple-negative human breast cancer cells. Currently, we reported the role of mutant p53-R280K in mediating the survival of MDA-MB-231 cells in vitro. The present study was undertaken to determine whether mutant p53-R280K affects breast cancer cell growth in vivo. To this end, we used small interfering RNA to knockdown the level of mutant p53-R280K in MDA-MB-231 cells. Silencing of mutant p53-R280K in MDA-MB-231 cells causes substantial tumor regression of established xenografts in vivo. In xenograft model for breast cancer, silencing of mutant p53-R280K in MDA-MB-231 cells significantly inhibited the tumor growth. Moreover, TUNEL assay showed more occurrence of apoptotic cells in mutant p53-R280K silenced tumors compared to control. Our data indicate that mutant p53-R280K has an important role in mediating tumor growth of MDA-MB-231 cells in vivo. Taken together, this study suggests that endogenous mutant p53-R280K could be used as a therapeutic target for breast cancer cells harboring this TP53 missense mutation.

Interaction of promyelocytic leukemia/p53 affects signal transducer and activator of transcription-3 activity in response to oncostatin M

  • Lim, Jiwoo;Choi, Ji Ha;Park, Eun-Mi;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.203-212
    • /
    • 2020
  • Promyelocytic leukemia (PML) gene, through alternative splicing of its C-terminal region, generates several PML isoforms that interact with specific partners and perform distinct functions. The PML protein is a tumor suppressor that plays an important role by interacting with various proteins. Herein, we investigated the effect of the PML isoforms on oncostatin M (OSM)-induced signal transducer and activator of transcription-3 (STAT-3) transcriptional activity. PML influenced OSM-induced STAT-3 activity in a cell type-specific manner, which was dependent on the p53 status of the cells but regardless of PML isoform. Interestingly, overexpression of PML exerted opposite effects on OSM-induced STAT-3 activity in p53 wild-type and mutant cells. Specifically, overexpression of PML in the cell lines bearing wild-type p53 (NIH3T3 and U87-MG cells) decreased OSM-induced STAT-3 transcriptional activity, whereas overexpression of PML increased OSM-induced STAT-3 transcriptional activity in mutant p53-bearing cell lines (HEK293T and U251-MG cells). When wild-type p53 cells were co-transfected with PML-IV and R273H-p53 mutant, OSM-mediated STAT-3 transcriptional activity was significantly enhanced, compared to that of cells which were transfected with PML-IV alone; however, when cells bearing mutant p53 were co-transfected with PML-IV and wild-type p53, OSM-induced STAT-3 transcriptional activity was significantly decreased, compared to that of transfected cells with PML-IV alone. In conclusion, PML acts together with wild-type or mutant p53 and influences OSM-mediated STAT-3 activity in a negative or positive manner, resulting in the aberrant activation of STAT-3 in cancer cells bearing mutant p53 probably might occur through the interaction of mutant p53 with PML.

Mutant p53-Notch1 Signaling Axis Is Involved in Curcumin-Induced Apoptosis of Breast Cancer Cells

  • Bae, Yun-Hee;Ryu, Jong Hyo;Park, Hyun-Joo;Kim, Kwang Rok;Wee, Hee-Jun;Lee, Ok-Hee;Jang, Hye-Ock;Bae, Moon-Kyoung;Kim, Kyu-Won;Bae, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.

Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A (대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도)

  • Jung, Ji-Yeon;Na, Yun-sook;Jung, Ho-Chul;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Ribozyme-Mediated Replacement of p53 RNA by Targeted Trans-Splicing

  • Shin, Kyung-Sook;Bae, Soo-Jin;Hwang, Eun-Seong;Jeong, Sun-Joo;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.844-848
    • /
    • 2002
  • In more than half of human tumors, the p53 tumor suppressor gene is mutated. Thus, restoration of wild-type p53 activity by repair of mutant RNA could be a potentially promissing approach to cancer treatment. To explore the potential use of RNA repair for cancer therapy, trans-splicing group I ribozymes were developed that could replace mutant p53 RNA with RNA sequence attached to the 3'end of ribozymes. By employing a mapping library of ribozymes, we first determined which regions of the p53 RNA are accessible to ribozymes, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. Next, trans-splicing ribozymes were generated that specifically recognized the sequences around these accessible regions. Subsequently, the ribozymes reacted with and altered the p53 transcripts by transferring a 3'exon tag sequence onto the targeted p53 RNA with high fidelity. Thus, these ribozymes could be utilized to repair mutant p53 in tumors, which would revert the neoplastic phenotype.

Role of p53-dependent PI3K in Radioresistance of Colon Cancer Cells (대장암 세포의 방사선저항성에 대한 p53의존성 PI3K의 역할)

  • Lee, Heui-Kwan;Kim, Jong-Suk;Kwon, Hyoung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.258-262
    • /
    • 2010
  • Radiotherapy is one of the major therapies for cancer treatment. p53 acts as a central mediator of the cellular response to stressful stimuli, such as radiation. Recently it has been known that activation of the phosphatidylinositol-3-kinase (PI3K) pathway is associated with radioresistance. In this study, we investigated whether X-irradiation up-regulates PI3K in a p53-dependent manner in human colon cancer cells. In order to study this phenomenon, we have treated p53-wild type and p53-mutant type HCT116 cells with X-ray. Treatment of wild type HCT116 cells with 8 Gy resulted in a marked increase in PI3K (p85), which paralleled an increase in PTEN, a counterpart of PI3K. However, these effects of X-rays in the p53-mutant cells were not observed. These results suggest that the X-irradiation-induced up-regulation of PI3K/PTEN pathway is p53-dependent.

Effect of Adenovirus-p53 to Non-Small Cell Lung Cancer Cell Lines (Adenovirus-p53이 비소세포폐암세포 성장에 미치는 영향에 관한 연구)

  • 박종호;이춘택;김주현
    • Journal of Chest Surgery
    • /
    • v.31 no.12
    • /
    • pp.1134-1146
    • /
    • 1998
  • Background: The tumor suppressor gene p53 is one of the most frequently altered genes in human tumors, including those of the lung. There is now a compelling evidence that wild-type p53 can negatively influence cell growth by causing G1 arrest or by inducing apoptosis. The possibilities of using p53 for gene therapy are also gathering much interest. Material and Method: Our approach towards understanding p53 function would be to study the biological consequences of overexpression of wild-type p53 in normal and tumor cells by using adenovirus vectors capable of giving high levels of the p53 gene product in cells. We have used this vector containing wild-type p53 to infect tumor cells with different p53 status (null, mutant, or wild-type) to confirm that expression of p53 in null or mutant cell lines becomes possible by Adenovirus-p53 transduction, to examine the effects of high levels of p53 expression on the growth properties of tumor cells, to evaluate the role of apoptosis in p53-mediated biological effects, and to examine the effect of Adenovirus-p53 on the tumorigenicities of the lung cancer cell lines in vitro. Result: The results of our study showed that cells expressing endogenous mutant p53 and those devoid of p53 expression altogether were significantly more sensitive to Adenovirus-p53-mediated cytotoxicity compared to tumor cells expressing endogenous wild-type p53 and that overexpression of wild-type p53 induced programmed cell death. Also we knew that Adenovirus-p53 significantly reduced tumor colony formation of human non-small cell lung cancer cell lines, and decreased the growth of pre-formed colonies in vitro. Conclusion: These results suggest that adenovirus is an efficient vector for mediating transfer and expression of tumor suppressor genes in human non-small cell lung cancer cells and that the tumor cells null for p53 or expressing mutant p53 readily undergo apoptosis by Adenovirus-p53.

  • PDF

Study on the expression and detection of the p53 mutation in Korean colon cancer cell lines (한국인의 대장암 세포주에서 p53 돌연변이의 발견과 발현에 관한 연구)

  • Jung, Ji-Yeon;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.151-161
    • /
    • 2001
  • Background: Inactivation in p53 tumor suppressor gene through a point mutation and deletion is one of the most frequent genetic changes found in human cancer, with 50% of an incidence. This high rate of mutation mostly suggests that the gene plays a central role in the development of cancer and the mutations detected so far were found in exons 5 to 8. Mutation of p53 locus produced accumulation of abnormal p53 protein, and negative regulation of cell proliferation and transcriptional activation as a suppressor of transformation were lost. In addition, inhibition of its normal cellular function of wild-type by mutant is an important step in tumorigenesis. Method: 4 colon cancer cell lines (SNU C1, C2A, C4, C5) were examined for mutation in exons 5 to 8 of the p53 tumor suppressor gene by PCR-SSCP analysis and expression pattern by western blotting and immunoprecipitation. p53-mediated transactivation ability were examined by CAT assay and base substitution of p53 in SNU C2A cell were detected by DNA sequencing. Results: 1) SNU C2A cell and SNU C5 cell were detected mobility shifts each in exon 5 and exon 7 of p53 gene by the PCR-SSCP method, implicating being of p53 mutation. 2) 3 colon cancer cell lines (SNU C1, SNU C2A, SNU C5) expressed wild type and mutant type p53 protein. 3) In northern blot experiment, SNU C2A and SNU C5 cell expressed high level of p53 mRNA. 4) Results of p53-mediated transactivation in colon cancer cell lines by CAT assay represented only SNU C2A cell has transcriptional activity. 5) DNA sequencing in SNU C2A cell showed missense mutation in codon 179 of one allele, histidine to arginine and wild type p53 in the other allele. Conclusion: Colon cancer cell lines showed correlation with mutation in p53 gene and accumulation of abnormal p53 protein. Colon cancer cell SNU C2A retained p53-mediated transactivation as heterozygous p53 with one mutant allele in 179 codon and the other wild-type allele.

  • PDF

Expression Pattern of RB and p53 Proteins and its Correlation with Prognosis in Primary Lung Cancer (원발성 폐암에서 종양억제유전자 RB와 p53 단백질 발현양상과 예후와의 상관관계)

  • 이상용;허혜경;최필조;우종수;홍숙희
    • Journal of Chest Surgery
    • /
    • v.29 no.11
    • /
    • pp.1223-1231
    • /
    • 1996
  • Immunohistochemical stains for RB and p53 tumor suppressor gene products were performed on 72 cases of resected primary lung cancer tissues to study the correlation between their expressions and the histologic types, the clinical stage, and the survival rate. The results were as follows. 1. The RB protein was altered or absent in 38 cases (52.8%), and the mutant p53 protein was detected in 35 cases (48.6%). 2. The incidences of RB and p53 protein expression were significantly different among the histologic types (p<0.05) but were not correlated with the clinical stages of lung cancer (p>0.05). 3. The two year survival rate of patients with alteration of both RB and p53 genes (RB-/p53+) was 22. 4%, and that with no alteration of both genes (RB+/p53-) was 63.1%. This difference was statistically significant (p=0.01). 4. It was shown that alteration of RB protein greatly affects the prognosis of lung carcinoma by multivariate analysis of prognostic factors. The presence or absence of RB and mutant p53 protein in tumor cells is closely related to the survival of primary lung cancer patients, and it is suggested that RB gene expression is an independent prognostic factor of primary lung cancer.

  • PDF

α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms

  • Yoo, Gyeongji;An, Hyeong Jeon;Yeou, Sanghun;Lee, Nam Ki
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.806-819
    • /
    • 2022
  • Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.