Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0102

α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms  

Yoo, Gyeongji (Department of Chemistry, Seoul National University)
An, Hyeong Jeon (Department of Physics, Pohang University of Science and Technology)
Yeou, Sanghun (Department of Chemistry, Seoul National University)
Lee, Nam Ki (Department of Chemistry, Seoul National University)
Abstract
Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.
Keywords
alpha-synuclein; familial mutant; Parkinson's disease; VAMP2; vesicle fusion;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Agliardi, C., Meloni, M., Guerini, F.R., Zanzottera, M., Bolognesi, E., Baglio, F., and Clerici, M. (2021). Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson's disease. Neurobiol. Dis. 148, 105185.   DOI
2 Musteikyte, G., Jayaram, A.K., Xu, C.K., Vendruscolo, M., Krainer, G., and Knowles, T.P.J. (2021). Interactions of α-synuclein oligomers with lipid membranes. Biochim. Biophys. Acta Biomembr. 1863, 183536.   DOI
3 Pieri, L., Madiona, K., and Melki, R. (2016). Structural and functional properties of prefibrillar alpha-synuclein oligomers. Sci. Rep. 6, 24526.   DOI
4 Richter, R.P., Berat, R., and Brisson, A.R. (2006). Formation of solidsupported lipid bilayers: an integrated view. Langmuir 22, 3497-3505.   DOI
5 Bodner, C.R., Dobson, C.M., and Bax, A. (2009). Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 390, 775-790.   DOI
6 Burre, J., Sharma, M., and Sudhof, T.C. (2012). Systematic mutagenesis of alpha-synuclein reveals distinct sequence requirements for physiological and pathological activities. J. Neurosci. 32, 15227-15242.   DOI
7 Diao, J.J., Burre, J., Vivona, S., Cipriano, D.J., Sharma, M., Kyoung, M., Sudhof, T.C., and Brunger, A.T. (2013). Native alpha-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2, e00592.   DOI
8 Eliezer, D. (2009). Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 19, 23-30.   DOI
9 Fanning, S., Selkoe, D., and Dettmer, U. (2020). Parkinson's disease: proteinopathy or lipidopathy? NPJ Parkinsons Dis. 6, 3.   DOI
10 Fuchs, J., Nilsson, C., Kachergus, J., Munz, M., Larsson, E.M., Schule, B., Langston, J., Middleton, F., Ross, O.A., Hulihan, M., et al. (2007). Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68, 916-922.   DOI
11 Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). alpha-synuclein in Lewy bodies. Nature 388, 839-840.   DOI
12 Fusco, G., Chen, S.W., Williamson, P.T.F., Cascella, R., Perni, M., Jarvis, J.A., Cecchi, C., Vendruscolo, M., Chiti, F., Cremades, N., et al. (2017). Structural basis of membrane disruption and cellular toxicity by alpha-synuclein oligomers. Science 358, 1440-1443.   DOI
13 Fusco, G., Pape, T., Stephens, A.D., Mahou, P., Costa, A.R., Kaminski, C.F., Schierle, G.S.K., Vendruscolo, M., Veglia, G., Dobson, C.M., et al. (2016). Structural basis of synaptic vesicle assembly promoted by alpha-synuclein. Nat. Commun. 7, 12563.   DOI
14 Goedert, M. (2001). Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492-501.   DOI
15 Jackman, J.A. and Cho, N.J. (2020). Supported lipid bilayer formation: beyond vesicle fusion. Langmuir 36, 1387-1400.   DOI
16 Furukawa, K., Matsuzaki-Kobayashi, M., Hasegawa, T., Kikuchi, A., Sugeno, N., Itoyama, Y., Wang, Y., Yao, P.J., Bushlin, I., and Takeda, A. (2006). Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J. Neurochem. 97, 1071-1077.   DOI
17 Heo, P. and Pincet, F. (2020). Freezing and piercing of in vitro asymmetric plasma membrane by α-synuclein. Commun. Biol. 3, 148.   DOI
18 Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., De Silva, H.A.R., Kittel, A., and Saitoh, T. (1995). The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467-475.   DOI
19 Giannakis, E., Pacifico, J., Smith, D.P., Hung, L.W., Masters, C.L., Cappai, R., Wade, J.D., and Barnham, K.J. (2008). Dimeric structures of α-synuclein bind preferentially to lipid membranes. Biochim. Biophys. Acta 1778, 1112-1119.   DOI
20 Rovere, M., Powers, A.E., Jiang, H.Y., Pitino, J.C., Fonseca-Ornelas, L., Patel, D.S., Achille, A., Langen, R., Varkey, J., and Bartels, T. (2019). E46K-like α-synuclein mutants increase lipid interactions and disrupt membrane selectivity. J. Biol. Chem. 294, 9799-9812.   DOI
21 Zakharov, S.D., Hulleman, J.D., Dutseva, E.A., Antonenko, Y.N., Rochet, J.C., and Cramer, W.A. (2007). Helical alpha-synuclein forms highly conductive ion channels. Biochemistry 46, 14369-14379.   DOI
22 Kumar, S.T., Donzelli, S., Chiki, A., Syed, M.M.K., and Lashuel, H.A. (2020). A simple, versatile and robust centrifugation-based filtration protocol for the isolation and quantification of alpha-synuclein monomers, oligomers and fibrils: towards improving experimental reproducibility in alphasynuclein research. J. Neurochem. 153, 103-119.   DOI
23 Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L., and Danuser, G. (2008). Robust single-particle tracking in live-cell timelapse sequences. Nat. Methods 5, 695-702.   DOI
24 Zarranz, J.J., Alegre, J., Gomez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164-173.   DOI
25 Kim, H.Y., Cho, M.K., Kumar, A., Maier, E., Siebenhaar, C., Becker, S., Fernandez, C.O., Lashuel, H.A., Benz, R., Lange, A., et al. (2009). Structural properties of pore-forming oligomers of α-synuclein. J. Am. Chem. Soc. 131, 17482-17489.   DOI
26 Kim, J.Y., Choi, B.K., Choi, M.G., Kim, S.A., Lai, Y., Shin, Y.K., and Lee, N.K. (2012). Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs. EMBO J. 31, 2144-2155.   DOI
27 Alam, P., Bousset, L., Melki, R., and Otzen, D.E. (2019). alpha-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J. Neurochem. 150, 522-534.   DOI
28 Burre, J., Sharma, M., and Sudhof, T.C. (2014). alpha-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. U. S. A. 111, E4274-E4283.
29 Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., and Sudhof, T.C. (2010). alpha-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663-1667.   DOI
30 Choi, B.K., Choi, M.G., Kim, J.Y., Yang, Y., Lai, Y., Kweon, D.H., Lee, N.K., and Shin, Y.K. (2013). Large alpha-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc. Natl. Acad. Sci. U. S. A. 110, 4087-4092.   DOI
31 Lashuel, H.A., Petre, B.M., Wall, J., Simon, M., Nowak, R.J., Walz, T., and Lansbury, P.T. (2002). alpha-synuclein, especially the Parkinson's diseaseassociated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089-1102.   DOI
32 Li, J., Uversky, V.N., and Fink, A.L. (2001). Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40, 11604-11613.   DOI
33 Jo, E.J., McLaurin, J., Yip, C.M., St George-Hyslop, P., and Fraser, P.E. (2000). alpha-synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34328-34334.   DOI
34 Eliezer, D., Kutluay, E., Bussell, R., and Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states. J. Mol. Biol. 307, 1061-1073.   DOI
35 Conway, K.A., Lee, S.J., Rochet, J.C., Ding, T.T., Williamson, R.E., and Lansbury, P.T. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. U. S. A. 97, 571-576.   DOI
36 Davidson, W.S., Jonas, A., Clayton, D.F., and George, J.M. (1998). Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443-9449.   DOI
37 DeWitt, D.C. and Rhoades, E. (2013). alpha-Synuclein can inhibit SNAREmediated vesicle fusion through direct interactions with lipid bilayers. Biochemistry 52, 2385-2387.   DOI
38 Murphy, D.D., Rueter, S.M., Trojanowski, J.Q., and Lee, V.M.Y. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214-3220.   DOI
39 Lou, X.C., Kim, J., Hawk, B.J., and Shin, Y.K. (2017). alpha-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNAREdependent vesicle docking. Biochem. J. 474, 2039-2049.   DOI
40 McCormack, A., Keating, D.J., Chegeni, N., Colella, A., Wang, J.J., and Chataway, T. (2019). Abundance of synaptic vesicle-related proteins in alpha-synuclein-containing protein inclusions suggests a targeted formation mechanism. Neurotox. Res. 35, 883-897.   DOI
41 Narayanan, V. and Scarlata, S. (2001). Membrane binding and selfassociation of alpha-synucleins. Biochemistry 40, 9927-9934.   DOI
42 Petrucci, S., Ginevrino, M., and Valente, E.M. (2016). Phenotypic spectrum of alpha-synuclein mutations: new insights from patients and cellular models. Parkinsonism Relat. Disord. 22 Suppl 1, S16-S20.   DOI
43 Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047.   DOI
44 Reynolds, N.P., Soragni, A., Rabe, M., Verdes, D., Liverani, E., Handschin, S., Riek, R., and Seeger, S. (2011). Mechanism of membrane interaction and disruption by α-synuclein. J. Am. Chem. Soc. 133, 19366-19375.   DOI
45 Volles, M.J. and Lansbury, P.T. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41, 4595-4602.   DOI
46 Cho, Y., An, H.J., Kim, T., Lee, C., and Lee, N.K. (2021). Mechanism of Cyanine5 to Cyanine3 photoconversion and its application for highdensity single-particle tracking in a living cell. J. Am. Chem. Soc. 143, 14125-14135.   DOI
47 Choi, M.G., Kim, M.J., Kim, D.G., Yu, R., Jang, Y.N., and Oh, W.J. (2018). Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide. PLoS One 13, e0195339.   DOI
48 Robotta, M., Cattani, J., Martins, J.C., Subramaniam, V., and Drescher, M. (2017). Alpha-synuclein disease mutations are structurally defective and locally affect membrane binding. J. Am. Chem. Soc. 139, 4254-4257.   DOI
49 Tsigelny, I.F., Sharikov, Y., Wrasidlo, W., Gonzalez, T., Desplats, P.A., Crews, L., Spencer, B., and Masliah, E. (2012). Role of alpha-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J. 279, 1000-1013.   DOI
50 van Meer, G., Voelker, D.R., and Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124.   DOI
51 Volles, M.J., Lee, S.J., Rochet, J.C., Shtilerman, M.D., Ding, T.T., Kessler, J.C., and Lansbury, P.T. (2001). Vesicle permeabilization by protofibrillar alphasynuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40, 7812-7819.   DOI
52 Wakabayashi, K., Matsumoto, K., Takayama, K., Yoshimoto, M., and Takahashi, H. (1997). NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson's disease. Neurosci. Lett. 239, 45-48.   DOI
53 Wang, L.N., Das, U., Scott, D.A., Tang, Y., McLean, P.J., and Roy, S. (2014). alpha-Synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol. 24, 2319-2326.   DOI
54 Wang, W. (2005). Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 289, 1-30.   DOI
55 Lee, Y., Kim, J., Kim, H., Han, J.E., Kim, S., Kang, K.H., Kim, D., Kim, J.M., and Koh, H. (2022). Pyruvate dehydrogenase kinase protects dopaminergic neurons from oxidative stress in Drosophila DJ-1 null mutants. Mol. Cells 45, 454-464.   DOI
56 Jacobson, K., Liu, P., and Lagerholm, B.C. (2019). The lateral organization and mobility of plasma membrane components. Cell 177, 806-819.   DOI
57 Kim, D.H., Zhou, K., Kim, D.K., Park, S., Noh, J., Kwon, Y., Kim, D., Song, N.W., Lee, J.B., Suh, P.G., et al. (2015). Analysis of interactions between the epidermal growth factor receptor and soluble ligands on the basis of single-molecule diffusivity in the membrane of living cells. Angew. Chem. Int. Ed. Engl. 54, 7028-7032.   DOI
58 Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L., and Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18, 106-108.   DOI
59 Tanaka, G., Yamanaka, T., Furukawa, Y., Kajimura, N., Mitsuoka, K., and Nukina, N. (2019). Biochemical and morphological classification of disease-associated alpha-synuclein mutants aggregates. Biochem. Biophys. Res. Commun. 508, 729-734.   DOI
60 Ross, C.A. and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10-S17.   DOI
61 Maroteaux, L., Campanelli, J.T., and Scheller, R.H. (1988). Synuclein - a neuron-specific protein localized to the nucleus and presynaptic nerveterminal. J. Neurosci. 8, 2804-2815.   DOI
62 Conway, K.A., Harper, J.D., and Lansbury, P.T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318-1320.   DOI
63 Conway, K.A., Rochet, J.C., Bieganski, R.M., and Lansbury, P.T. (2001). Kinetic stabilization of the alpha-synuclein protofibril by a dopaminealpha-synuclein adduct. Science 294, 1346-1349.   DOI
64 Danzer, K.M., Haasen, D., Karow, A.R., Moussaud, S., Habeck, M., Giese, A., Kretzschmar, H., Hengerer, B., and Kostka, M. (2007). Different species of alpha-synuclein oligomers induce calcium influx and seeding. J. Neurosci. 27, 9220-9232.   DOI
65 Dettmer, U., Ramalingam, N., von Saucken, V.E., Kim, T.E., Newman, A.J., Terry-Kantor, E., Nuber, S., Ericsson, M., Fanning, S., Bartels, T., et al. (2017). Loss of native alpha-synuclein multimerization by strategically mutating its amphipathic helix causes abnormal vesicle interactions in neuronal cells. Hum. Mol. Genet. 26, 3466-3481.   DOI
66 Dettmer, U., Selkoe, D., and Bartels, T. (2016). New insights into cellular α-synuclein homeostasis in health and disease. Curr. Opin. Neurobiol. 36, 15-22.   DOI
67 Stefanovic, A.N.D., Lindhoud, S., Semerdzhiev, S.A., Claessens, M., and Subramanian, V. (2015). Oligomers of Parkinson's disease-related alphasynuclein mutants have similar structures but distinctive membrane permeabilization properties. Biochemistry 54, 3142-3150.   DOI
68 Selvaraj, S. and Piramanayagam, S. (2019). Impact of gene mutation in the development of Parkinson's disease. Genes Dis. 6, 120-128.   DOI
69 Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M., and Goedert, M. (1998). alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U. S. A. 95, 6469-6473.   DOI
70 Stckl, M.T., Zijlstra, N., and Subramaniam, V. (2013). alpha-Synuclein oligomers: an amyloid pore? Insights into mechanisms of α-synuclein oligomer-lipid interactions. Mol. Neurobiol. 47, 613-621.   DOI
71 Sun, J.C., Wang, L.N., Bao, H., Premi, S., Das, U., Chapman, E.R., and Roy, S. (2019). Functional cooperation of alpha-synuclein and VAMP2 in synaptic vesicle recycling. Proc. Natl. Acad. Sci. U. S. A. 116, 11113-11115.   DOI
72 Wang, W., Nema, S., and Teagarden, D. (2010). Protein aggregation-pathways and influencing factors. Int. J. Pharm. 390, 89-99.   DOI
73 Yeou, S. and Lee, N.K. (2022). Single-molecule methods for investigating the double-stranded DNA bendability. Mol. Cells 45, 33-40.   DOI
74 Yoo, G., Yeou, S., Son, J.B., Shin, Y.K., and Lee, N.K. (2021). Cooperative inhibition of SNARE-mediated vesicle fusion by α-synuclein monomers and oligomers. Sci. Rep. 11, 10955.   DOI
75 Yoo, G., Shin, Y.K., and Lee, N.K. (2022). The role of α-synuclein in SNAREmediated synaptic vesicle fusion. J. Mol. Biol. 2022 Aug 3 [Epub]. https://doi.org/10.1016/j.jmb.2022.167775   DOI