• Title/Summary/Keyword: p53 expression

Search Result 965, Processing Time 0.022 seconds

Effect of the Ethanol Extract from Citrus Peels on Oxidative Damage in Alloxan-induced HIT-T15 Cell (진피 에탄올 추출물이 Alloxan에 의해 유도된 HIT-T15 세포의 산화적 손상에 미치는 영향)

  • Jung, Hee-Kyoung;Jeong, Yoo-Seok;Park, Chi-Deok;Park, Chang-Ho;Hong, Joo-Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1102-1106
    • /
    • 2010
  • This study was carried out to investigate the effect of ethanol extract from citrus peels (CP-Et) against the alloxan-induced oxidative damage on HIT-T15, Hamster pancreatic $\beta$-cell. Total polyphenol and flavonoid contents in CP-Et were $57.00{\pm}2.91\;mg/g$ and $8.11{\pm}2.83\;mg/g$, respectively. Cell toxicity on HIT-T15 by CP-Et (0.125~0.75 mg/mL) was not observed. CP-Et (0.125 mg/mL) increased cell proliferation rate of HIT-T15, which was treated alloxan ($IC_{50}=11.58\;mM$) (cell viability=$80.52{\pm}3.29%$ of normal cell, p<0.05). In comparison with insulin secretion of oxidative damaged HIT-T15, 1.5 fold ($116.93{\pm}2.11\;{\mu}g/mg$ protein) was increased by treatment CP-Et treatment (0.125 mg/mL) in HIT-T15 (p<0.05). These results showed that CP-Et contribute to repairing cells and improvement of insulin expression on oxidative stress pancreatic $\beta$-cell, and also suggested application of CP-Et as a functional food material for type 2 diabetes.

A novel PRF1 gene mutation in a fatal neonate case with type 2 familial hemophagocytic lymphohistiocytosis

  • Kim, Jae Yeon;Shin, Jeong Hee;Sung, Se In;Kim, Jin Kyu;Jung, Ji Mi;Ahn, So Yoon;Kim, Eun Sun;Seo, Ja-Young;Kang, Eun-Sook;Kim, Sun-Hee;Kim, Hee-Jin;Chang, Yun Sil;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.1
    • /
    • pp.50-53
    • /
    • 2014
  • Hemophagocytic lymphohistiocytosis (HLH) occurs in the primary form (genetic or familial) or secondary form (acquired). The familial form of HLH (FHL) is a potentially fatal autosomal recessive disorder that occurs because of constitutional defects in cell-mediated cytotoxicity. Here, we report a fatal neonatal case of type 2 FHL (FHL2) that involved a novel frameshift mutation. Clinically, the newborn presented with severe sepsis-like features and required mechanical ventilation and continuous venovenous hemodiafiltration. Flow cytometry analysis showed marked HLH and complete absence of intracytoplasmic perforin expression in cytotoxic cells; therefore, we performed molecular genetic analyses for PRF1 mutations, which showed that the patient had a compound heterozygous mutation in PRF1, that is, c.65delC ($p.Pro22Argfs^*2$) and c.1090_1091delCT ($p.Leu364Glufs^*93$). Clinical and genetic assessments for FHL are required for neonates with refractory fever and progressive multiple organ failure, particularly when there is no evidence of microbiological or metabolic cause.

Effect of Gamisamgibopae-tang on the Growth and Apoptosis of A539 and NCI-H460 Human Lung Cancer Cells (A539 및 NCI-H460 인체 폐암세포의 증식 및 apoptosis 유도에 미치는 가미삼기보폐탕의 영향)

  • Kim, Jin-Young;Kim, Hyun-Joong;Jung, Kwang-Sik;Park, Cheol;Choi, Yung-Hyun;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.130-148
    • /
    • 2008
  • Objective : This study was designed to investigate the effect of the water extract of Gamisamgibopae-tang(GMSGBPT), an oriental herbal formulation, on the growth of NCI-H460 and A549 human non-small-cell lung cancer cell lines. Methods : Cytotoxicity and cell morphology were evaluated by MTT assay and inverted microscope, respectively. Apoptosis was detected using agarose gel electrophoresis and flow cytometer. The expression levels of mRNAs and proteins of target genes were determined by RT-PCR and western blot analyses, respectively Result and Conclusion : We found that exposure of A549 cells to GMSGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, but GMSGBPTdid not affect the growth of NCI-H460 cells. The anti-proliferative effect of GMSGBPT treatment in A549 cells was associated with morphological changes, formation of apoptotic bodies and DNA fragmentation, and flow cytometry analysis confirmed that GMSGBPT treatment increased the populations of apoptotic-sub G1 phase. Growth inhibition and apoptotic cell death by GMSGBPT were connected with a up-regulation of cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) mRNA and protein in a tumor suppressor p53-independent fashion. However GMSGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), inducible nitric oxide synthase (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 orNCI-H460 cells. Taken together, these findings partially provide novel insights into the possible molecular mechanism of the anti-cancer activity of GMSGBPT.

  • PDF

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

  • Yang, Kyeong-Eun;Jang, Hyun-Jin;Hwang, In-Hu;Hong, Eun Mi;Lee, Min-Goo;Lee, Soon;Jang, Ik-Soon;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.341-349
    • /
    • 2020
  • Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

Protective effect of matcha green tea (Camellia sinensis) extract on high glucose- and oleic acid-induced hepatic inflammatory effect (고당 및 올레산으로 유도된 간세포에서의 염증반응에 대한 말차(Camellia sinensis) 추출물의 보호효과)

  • Kim, Jong Min;Lee, Uk;Kang, Jin Yong;Park, Seon Kyeong;Shin, Eun Jin;Moon, Jong Hyun;Kim, Min Ji;Lee, Hyo Lim;Kim, Gil Han;Jeong, Hye Rin;Park, Hyo Won;Kim, Jong Cheol;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.267-277
    • /
    • 2021
  • To evaluate hepatoprotective effects, the antioxidant capacities of matcha green tea extract (Camellia sinenesis) were compared to those of green leaf tea and the anti-inflammatory activities in HepG2 cells were investigated. Evaluation of the total phenolic and total flavonoid content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and inhibitory effect on lipid peroxidation indicated that the aqueous extract of matcha green tea presented significant catechin content and antioxidant capacity compared to those of green leaf tea. In addition, the extract had considerable inhibitory effects on α-glucosidase, α-amylase, and advanced glycation end-products. The matcha green tea extract significantly increased cell viability and reduced reactive oxygen species in H2O2- and high-glucose-treated HepG2 cells. Furthermore, in response to oleic acid-induced HepG2 cell injury, treatment with matcha green tea aqueous extract inhibited lipid accumulation and regulated the expression of inflammatory proteins such as p-JNK, p-Akt, p-GSK-3β, caspase-3, COX-2, iNOS, and TNF-α. Matcha green tea could be used as a functional material to ameliorate hepatic lipid accumulation and inflammation.

Estrogeicity of Genistein and Bisphenol A (콩류식품의 주성분인 Genistein과 식품포장재 및 용기에 사용되는 Bisphenol A의 에스트로젠 효과에 관한 연구)

  • 강경선;이영순;신광순
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.106-111
    • /
    • 1998
  • This study has been focused on both estrogenic and proliferating activity of genistein (GEN) and bisphenol A (BPA). GEN and BPA enhance the proliferation of estrogen-dependent MCF-7 human breast cancer cells at concentrations as low as 100 nM of GEN and 8 ng/ml of BP A achieving similar effect to that of estradiol at 1 nM. Expression of the estrogen responsive gene, pS2 was also induced in MCF-7 cells by treatment with genistein at dose as low as 1 nM and BPA at dose as low as 4 ng/ml. Using 21 day-old ovariectomized nude mice, we examined end-bud formation and mammary gland development after treatment with bisphenol A or genistein. Compared with untreated control, mammary gland development and end-bud formation were significantly increased in mice fed genistein or bisphenol A (p<0.05). Taken together, it is concluded that GEN and BP A can act as an estrogen agonist resulting in cell proliferation and induction of the estrogen responsive pS2 gene in MCF-7 cells in vitro and in athymic mice in vivo, respectively. Therefore, it is suggested that GEN and BP A might modulate human endocrine system and these compounds might be considered as a endocrine modulator at the low levels of doses.

  • PDF

Photoprotective Effect of Grape Pruning Stem Extracts on the UVB Induced HR-1 Mice Skin (포도전정가지 추출물이 UVB에 유도된 HR-1 mice의 피부손상에 대한 광보호 효과)

  • Kim, Joung-Hee;Kim, Jong Guk;Kim, Sun-Gun;Jeong, Seung-IL;Jang, Min-Jung;Kim, Kil-Soo;Kim, Keuk-Jun;Kwack, Seung-Jun
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • This study intends to analyze the contents of rutin, procyanidin B3, quercetin, kaempferol, known to have antioxidant, anti-inflammatory and anti-carcinogenic effects, among the polyphenol type contained in the grape pruning stem extracts (GPSE), utilizing grape stems being discarded after harvest, measure the effects on the skin moisture, inhibition of skin cell proliferation, anti-inflammatory on the damaged skin of a HR-1 mice induced with UVB, and verify the applicability as a material for functional food and functional cosmetics. The results of verifying the photoprotection effects through the skin proliferation control through of GPSE showed similar result to suncream was achieved at the GPSE concentration of 2,000 mg/kg on the epidermis (p<0.05). The results showed anti-inflammatory effects on all groups applied with GPSE as compared to the control group irradiated with UVB, but at the GPSE concentration of 1,000 mg/kg, a lower COX-2 protein expression at 8%, lower than the 22% of suncream, was observed to achieve an excellent anti-inflammatory effect (p<0.05). The results of this study confirmed the existence of active polyphenol type, such as rutin, kaempferol, querocetin and procyanidin B3, within the GPSE, and GPSE has improvement effects on moisturizing effects, skin proliferation control effect, inflammatory control effect and improvement effects on the skin barrier function through UV ray damage. GPSE is a functional ingredient with a potential for skin protection effects, and has high utilization as an ingredient for functional food and functional cosmetics.

Cytotoxic Effect and Protein Expression by Korean Regional Propolis on HeLa Ovarian Cancer Cell Line (HeLa 암세포주에 대한 국산 프로폴리스의 독성 효과 및 단백질 발현 변화)

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Kim, Se Gun;Bang, Kyung Won;Kim, Hyo Young;Choi, Hong Min;Moon, Hyo Jung
    • Journal of Apiculture
    • /
    • v.34 no.3
    • /
    • pp.245-254
    • /
    • 2019
  • We investigated the anti-tumor effects and molecular mechanism of Brazil, China and Korean regional propolis on HeLa ovarian cancer cell line. Each propolis extracts was prepared by ethanol extraction method. Cytotoxicity of propolis extracts was determinated by EZ-cytox cell viability assay. To necessity of anti-tumor effect and molecular mechanism of propolis, we must be adjusting propolis concentration. Due to 100 ㎍/mL of propolis extract were reduced cell viability to less than 50%, we adjusted all of propolis concentration to 100 ㎍/mL. By Western blotting analysis, we confirmed that anti-tumor mechanism of Brazil, China and Korea regional propolis has significantly difference. All of propolis was activated apoptosis related molecules such as PARP, caspase-3. However, cell proliferation signaling molecules including Akt1, ERK and Bcl-2 were reduced the protein expression level. Especially, the expression of tumor suppressor protein p53 was significantly increased in propolis-treated group such as Gyeonggi, Chungbuk, Chungnam, Jeonbuk, Gyeongnam and China. The phosphorylation of Bax which as apoptosis indicator was appeared in propolis-treated group such as Gyeonggi, Gangwon, Chungnam, Gyeongbuk, China. In this results showed that the regional propolis has completely different mechanism in anti-tumor. Thus, propolis extracts may be useful source of functional materials on anti-cancer and it will be able to choose the suitable propolis for cancer therapy by analyzing individual characteristics.

Anti-atopic Effects of Castanea crenata Inner Shell Extracts Fermented by Lactobacillus bifermentans (Lactobacillus bifermentans로 발효한 율피의 항아토피 효과)

  • Kim, Bae Jin;Son, Woo Rim;Choi, Mi Ok;Jo, Seung Kyeung;Jung, Hee Kyoung;Lee, Jin Tae;Kim, Hak Yoon;Kwoen, Dae Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1378-1386
    • /
    • 2013
  • Atopic dermatitis (AD) is a common skin disease characterized by chronic and relapsing inflammatory dermatitis with immunological disturbances. In spite of the continuous increase in the incidence of AD, it is regrettable that till date there is no effective treatment to treat the same. Therefore, the present study was designed to examine the possible anti-atopic effects of Castanea crenata inner shell extracts fermented by Lactobacillus bifermentans (FCS) in 2,4-dinitrochlorobenzene (DNCB) induced AD in NC/Nga mice. Based on the results of HPLC analysis, we found that FCS contains anti-inflammatory factors such as gallic acid (10.18 mg/g) and ellagic acid (2.14 mg/g). The groups that we have used in this study included 0.1%, 1%, 5% fermented Castanea crenata inner shell extracts (FCS 0.1, FCS 1, FCS 5), 1,3-butylene glycol treated control (AD), and normal mice. After topical FCS treatment, we observed that the clinical severity score for AD was lower in both the FCS 1 and FCS 5 groups than the AD group. We also proved beyond doubt that there was improvement of melanin, erythema and skin moisture indices in the FCS 5 group. Spleen index and gene expression levels of pro-inflammatory cytokines such as IL-$1{\beta}$ and TNF-${\alpha}$ were significantly decreased in the FCS 5 group compared to the AD group (P<0.05). Further, we also found that the level of serum immunoglobulin E (IgE) in the FCS-treated group was decreased in a concentration-dependent manner. The results of our study suggest that FCS can be effectively used as a cosmeceutical ingredient for both the prevention and improvement of AD.

Regulatory Mechanism of Radiation-induced Cancer Cell Death by the Change of Cell Cycle (세포주기 변화에 타른 방사선 유도 암세포 사망의 조절기전)

  • Jeong Soo-Jin;Jeong Min-Ho;Jang Ji-Yeon;Jo Wol-Soon;Nam Byung-Hyouk;Jeong Min-Za;Lim Young-Jin;Jang Byung Gon;Youn Seon-Min;Lee Hyung Sik;Hur Won Joo;Yang Kwang Mo
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.306-314
    • /
    • 2003
  • Purpose : In our Previous study, we have shown the main cel1 death pattern Induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myeiogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herblmycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. Materials and Methods: K562 cells In exponential growth phase were used for this study. The cells were Irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25 $\mu$N of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. Results: X-irradiated cells were arrested In the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first ceil-cycle post-treatment and an increase of cyclin Bl were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent Gl accumulation. HMA-induced cell cycle modifications correlated with the increase of CDK2 kinase activity, the decrease of the expressions of cyclins I and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin Bl and cdc25c and cdc25C kinase activity, increased the expression of pl6, and sustained senescence and megakaryocytic differentiation. Conclusion: The effects of HMA and genistein on the radiation-induced cell death of KS62 cells were closely related to the cell cycle regulatory activities. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.