• 제목/요약/키워드: p38 MAPK signal pathway

검색결과 82건 처리시간 0.025초

사간 물 추출물의 항염증 효과 (Anti-inflammatory Effects of Belamcanda Chinensis Water Extract)

  • 박성주;김수곤
    • 동의생리병리학회지
    • /
    • 제24권3호
    • /
    • pp.410-415
    • /
    • 2010
  • The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Belamcanda chinensis (BC) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of BC, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kB) using Western blot. BC inhibited LPS-induced production of NO, IL-6 and TNF-a but not of IL-1b in RAW 264.7 cells. BC respectively inhibited the activation of MAPKs such as c-Jun NH2-terminal kinase (JNK) and p38 but not of extracelluar signal-regulated kinase (ERK 1/2) and NF-kB in the LPS-stimulated RAW 264.7 cells. Taken together, Our results showed that BC down-regulated LPS-induced NO, IL-6 and TNF-a productions mainly through JNK and p38 MAPK pathway.

사상자의 세포자기살해능이 자궁경부암세포에 미치는 영향 (Effects of Apoptosis of Torilis Japonica on Cervical Cancer Cell)

  • 권나연;박장경;안상현;김기봉
    • 대한한방부인과학회지
    • /
    • 제36권1호
    • /
    • pp.23-34
    • /
    • 2023
  • Objectives: This study was conducted to confirm the anticancer effect of Torilis Japonica (TJ) on cervical cancer and to determine whether the effect was apoptosis. Methods: In this study, the effect of TJ extract on toxicity, mitochondrial morphology, nuclear morphological changes, Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathway were investigated in HeLa cell, human cervical cancer cell. Results: The cytotoxicity, ratio of cells with nuclear changes to the total number of cells, and P38 phosphorylation increased in a concentration-dependent manner after administration of TJ extract. The length of mitochondria and ERK phosphorylation in HeLa cells decreased in a concentration-dependent manner after administration of TJ extract. Conclusions: TJ extract has an anticancer effect on cervical cancer cells, which is presumed to be due to apoptosis, and showed potential as a future cervical cancer treatment.

Mitogen-Activated Protein Kinases (MAPKs) Mediate SIN-1/ Glucose Deprivation-Induced Death in Rat Primary Astrocytes

  • Yoo Byoung-Kwon;Choi Ji-Woong;Choi Min-Sik;Ryu Mi-Kyoung;Park Gyu-Hwan;Jeon Mi-Jin;Ko Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • 제28권8호
    • /
    • pp.942-947
    • /
    • 2005
  • Peroxynitrite is a potent neurotoxic molecule produced from a reaction between NO and super-oxide and induces NO-mediated inflammation under neuropathological conditions. Previously, we reported that glucose deprivation induced ATP depletion and cell death in immunostimulated astrocytes, which was mainly due to peroxynitrite. In this study, the role of MAPKs (ERK1/2, p38MAPK, and JNK/SAPK) signal pathway in the SIN-1/glucose deprivation-induced death of astrocytes was examined. A combined treatment with glucose deprivation and $50 {\mu}M$ SIN-1, an endogenous peroxynitrite generator, rapidly and markedly increased the death in rat primary astrocytes. Also, SIN-1/glucose deprivation resulted in the activation of MAPKs, which was significantly blocked by the treatment with $20{\mu}M$ MAPKs inhibitors (ERK1/2, PD98059; p38MAPK, SB203580; JNK/SAPK, SP600125). Interestingly, SIN-1/glucose deprivation caused the loss of intracellular ATP level, which was significantly reversed by MAPKs inhibitors. These results suggest that the activation of MAPKs plays an important role in SIN-1/glucose deprivation-induced cell death by regulating the intracellular ATP level.

산화적 스트레스에 대한 여주 (Momordica charantia) 추출물의 항산화 효과 및 세포사멸 억제 기전을 통한 신경세포보호효과 (Neuroprotective effects of Momordica charantia extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SK-N-MC cells)

  • 김꽃별;이선아;허재혁;김정희
    • Journal of Nutrition and Health
    • /
    • 제50권5호
    • /
    • pp.415-425
    • /
    • 2017
  • 건 여주로부터 얻은 70%에탄올 추출물의 항산화 효과를 측정하고, $H_2O_2$에 의해 유도된 산화적 스트레스에 대한 신경세포 보호효과를 알아보기 위해 human neuroblastoma cell인 SK-N-MC세포를 이용하여 실험을 수행하였다. 여주 추출물의 총 폴리페놀과 플라보노이드 함량은 각각 28.51 mg gallic acid/extract g과 3.95 mg catechin/extract g 이었고, 추출물의 DPPH 라디칼 소거능 ($IC_{50}$)은 $506.95{\mu}g/ml$ 이었다. 여주추출물을 신경세포에 전 처리한 후 $H_2O_2$을 처리하여 산화적 스트레스를 유도했을 때, 여주추출물에 의해 세포생존율은 증가되었고 세포내 ROS는 감소되는 것을 확인하였다. 그리고 세포내 항산화 방어시스템인 항산화효소 (SOD-1,2와 GPx-1)의 mRNA 발현이 여주추출물 처리에 의해 control 수준으로 회복되거나 control 보다 증가되는 결과를 보였으며, ROS 의존적 세포사멸과 연관 있는 것으로 알려진 MAPK pathway 중 p38과 JNK의 인산화를 여주추출물이 억제하였다. 또한 cleaved caspase-3와 cleaved PARP의 발현도 여주추출물의 처리에 의해 감소되었다. 본 연구 결과에서 70% 에탄올 여주추출물은 항산화효능이 우수하여 ROS를 직접적으로 제거할 뿐 아니라 세포내 ROS 축적을 억제시키는 효과를 보여주었다. 그리고 신경세포 내 항산화효소들의 발현 증가 기전과 p38, JNK의 인산화 억제 및 cleaved caspase-3, cleaved PARP의 발현 억제를 통한 세포사멸 억제 기전을 통해 산화적 스트레스로부터 신경세포를 보호하는 효과가 있음을 제시하고 있다. 따라서 여주추출물은 산화적 스트레스에 의한 알츠하이머병이나 파킨슨병 등과 같은 신경변성질환 (neurodegenerative disease)에 대한 예방 및 치료제의 소재로써 이용가치가 충분한 것으로 사료된다.

LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과 (Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells)

  • 홍지혜;장은서;길명철;이계원;조영호
    • 생명과학회지
    • /
    • 제33권6호
    • /
    • pp.471-480
    • /
    • 2023
  • 본 연구에서는 LPS로 자극된 RAW 264.7 세포에서 생물전환 루모라고사리 추출물(B-RAE)의 항염증 효과 및 작용기전을 연구하였다. B-RAE의 총 폴리페놀과 총 플라보노이드 함량을 측정한 결과 379.26±7.77 mg/g과 50.85±3.08 mg/g으로 각각 나타났다. B-RAE의 항산화효과를 측정한 결과 DPPH, ABTS, superoxide anion radical을 농도의존적으로 소거하는 것으로 확인되었다. 또한, B-RAE는 세포생존에 영향을 미치지 않으면서 NO 생성을 처리 농도의존적으로 저해하였다. 전염증성 사이토카인(TNF-α, IL-1β, IL-6) 발현에 미치는 영향을 정량적 실시간 PCR로 측정한 결과 전염증성 사이토카인의 mRNA발현량을 LPS 처리군과 비교하여 B-RAE 처리 농도 의존적으로 유의성 있게 감소시키는 것으로 나타났다. 염증 관련 단백질(iNOS, COX-2)의 발현 및 전사인자인 NF-κB와 MAPK 신호경로 단백질의 인산화에 미치는 영향을 Western blot분석으로 평가하였다. 그 결과 LPS 처리에 의하여 증가된 iNOS와 COX-2의 발현을 유의적으로 억제하였다. 또한, LPS 처리에 의하여 증가된 NF-κB와 IκB의 인산화가 B-RAE 처리에 의하여 감소되는 것으로 나타났다. MAPK 신호경로 단백질의 인산화에 미치는 영향을 측정한 결과 ERK와 p38 MAPK 단백질의 인산화는 농도의존적으로 감소하는 것으로 나타났으나 JNK의 인산화는 증가하는 것으로 나타났다. 따라서 이러한 B-RAE의 항염증 효과는 높은 항산화 활성, iNOS와 COX-2 발현 억제를 통한 NO 생성 억제, NF-κB경로 저해, MAPK 신호경로 조절 및 전염증성 사이토카인 발현 저해에 의해 가능하다는 것을 제시한다.

오령산에 의한 고포도당 유도 사구체간질세포 이상증식 개선효과 (Oryeong-san Ameliorates High Glucose-induced Mesangial Cell Proliferation)

  • 윤정주;이윤정;이소민;김대환;이호섭;강대길
    • 대한한의학방제학회지
    • /
    • 제21권2호
    • /
    • pp.53-62
    • /
    • 2013
  • Objectives : Diabetic nephropathy is associated with morbidity and mortality of diabetes mellitus patients. Mesangial cell proliferation is known as the major pathologic features such as glomerulosclerosis. Oryeong-san, Korean formula, is widely used for the treatment of nephrosis, edema, and uremia. Oryeong-san is composed of five herbs: Alismatis Rhizoma, Polyporus, Atractylodis Rhizoma Alba, Hoelen, and Cinnamomi Cortex. Methods : The present study was performed to investigate potent inhibitory effect of Oryeong-san on high glucose (HG)-induced rat mesangial cells (RMC) proliferation. Results : RMC proliferation under 25 mM glucose was significantly accelerated compared with 5.5 mM glucose, which was inhibited by Oryeong-san in dose dependent manner. Pre-treatment of Oryeong-san induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21waf1/cip1 and p27kip1 expression. In addition, Oryeong-san reduced HG-induced RMC proliferation by suppressed the mitogen-activated protein kinase (MAPK) phospholyration such as extracellular signal regulated kinase (ERK), Jun N-terminal Kinase (JNK), and p38. Oryeong-san significantly suppressed HG-induced ROS production. Conclusions : Oryeong-san consequently inhibited HG-induced mesangial cell proliferation through the inhibition of MAPK and ROS signaling pathway. These results suggest that Oryeong-san may be effective in the treatment of renal dysfunction leading to diabetic nephropathy.

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • 제42권1호
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도 (Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways)

  • 황주영;최영현
    • 생명과학회지
    • /
    • 제25권9호
    • /
    • pp.984-992
    • /
    • 2015
  • 혈근초(Sanguinaria canadensis)에서 처음 분리된 sanguinarine은 항산화, 항암 및 면역 증강 등의 효능이 있는 것으로 알려진 alkaloid 계열 물질 중의 하나이다. 본 연구에서는 인체간암 HepG2 세포를 대상으로 sanguinarine의 apoptosis 유도 효능 및 관련 기전 해석을 시도하였다. 본 연구의 결과에 의하면 sanguinarine은 HepG2 간암세포의 증식을 처리 농도 의존적으로 억제하였으며, 이는 apoptosis 유도와 연관성이 있었다. Sanguinarine에 의한 apoptosis 유도에는 Fas 및 Bax의 발현 증가, 미토콘드리아에서 세포질로의 cytochrome c 유리 및 MMPl (Δψm)의 소실을 동반하였다. Sanguinarine은 intrinsic 및 extrinsic apoptosis pathway의 활성에 관여하는 initiator caspase인 caspase-9와 -8의 활성과 effector caspase인 caspase-3의 활성 및 PARP 단백질의 단편화를 유발하였다. Sanguinarine은 또한 ROS의 생성을 촉진시켰으며, N-acetylcysteine 처리에 의한 ROS의 생성을 차단하였을 경우, sanguinarine에 의한 apoptosis 효능이 완벽하게 차단되었다. 아울러 sanguinarine은 Akt의 인산화를 억제한 반면, MAPKs의 인산화를 촉진시켰으며, 특히 PI3K와 ERK의 선택적 억제제는 sanguinarine에 의한 HepG2 간암세포의 증식을 더욱 억제시켰다. 따라서 sanguinarine에 의한 HepG2 간암세포의 apoptosis 유발에는 ROS 생성 의존적인 intrinsic 및 extrinsic signaling pathway가 동시에 활성화되며, PI3K/Akt 및 ERK 신호계가 관여함을 알 수 있었다.